Recently, one of the main purposes of wastewater treatment plants is to achieve a neutral or positive energy balance while meeting the discharge criteria. Aerobic granular sludge (AGS) technology is a promising technology that has low energy and footprint requirements as well as high treatment performance. The effect of co-treatment of municipal wastewater and food waste (FW) on the treatment performance, granule morphology, and settling behavior of the granules was investigated in the study. A biochemical methane potential (BMP) test was also performed to assess the methane potential of mono- and co-digestion of the excess sludge from the AGS process. The addition of FW into wastewater enhanced the nutrient treatment efficiency in the AGS process. BMP of the excess sludge from the AGS process fed with the mixture of wastewater and FW (195 ± 17 mL CH/g VS) was slightly higher than BMP of excess sludge from the AGS process fed with solely wastewater (173 ± 16 mL CH/g VS). The highest methane yield was observed for co-digestion of excess sludge from the AGS process and FW, which was 312 ± 8 mL CH/g VS. Integration of FW as a co-substrate in the AGS process would potentially enhance energy recovery and the quality of effluent in municipal wastewater treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058935PMC
http://dx.doi.org/10.1007/s11356-024-32997-5DOI Listing

Publication Analysis

Top Keywords

ags process
24
sludge ags
20
excess sludge
16
municipal wastewater
12
wastewater treatment
12
food waste
8
aerobic granular
8
granular sludge
8
treatment performance
8
methane potential
8

Similar Publications

The PurR family transcriptional regulator promotes butenyl-spinosyn production in Saccharopolyspora pogona.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.

Butenyl-spinosyn, derived from Saccharopolyspora pogona, is a broad-spectrum and effective bioinsecticide. However, the regulatory mechanism affecting butenyl-spinosyn synthesis has not been fully elucidated, which hindered the improvement of production. Here, a high-production strain S.

View Article and Find Full Text PDF

Ammonia-oxidizing bacteria (AOB) sourced from an aerobic granular sludge (AGS) process were rapidly enriched by progressively increasing ammonia nitrogen (NH-N) loads, achieving a Nitrosomonas abundance of 20.7 % and a nitrite accumulation rate exceeding 80 %. Mycelial pellets formed by Cladosporium, isolated from the same AGS system, provided a porous surface structure for the immobilization of the enriched AOB, creating mycelial pellet/AOB composites.

View Article and Find Full Text PDF

Dinotefuran (DIN) is toxic to non-target organisms and accelerates the evolution of antibiotic resistance, which poses a problem for the stable operation of the activated sludge process in wastewater treatment plants (WWTPs). However, the emergence and the transfer mechanism of antibiotic resistance genes (ARGs) in activated sludge systems under DIN stress remains unclear. Thus, in the study, the potential impact of DIN on ARGs and virulence factor genes (VFGs) in aerobic granular sludge (AGS) was investigated in depth using metagenomic binning and functional modules.

View Article and Find Full Text PDF

Shock waves, the interface of supersonic and subsonic plasma flows, are the primary region for charged particle acceleration in multiple space plasma systems, including Earth's bow shock, which is readily accessible for in-situ measurements. Spacecraft frequently observe relativistic electron populations within this region, characterized by energy levels surpassing those of solar wind electrons by a factor of 10,000 or more. However, mechanisms of such strong acceleration remain elusive.

View Article and Find Full Text PDF

Microencapsulation of Pickering nanoemulsions containing walnut oil stabilized using soy protein-curcumin composite nanoparticles: Fabrication and evaluation of a novel plant-based milk substitute.

Food Chem

December 2024

School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China. Electronic address:

Plant protein-stabilized Pickering nanoemulsions show potential as plant-based milk substitutes; however, their stability is challenged by mechanical stress during transportation and oxidative deterioration during storage. Herein, soybean isolate protein-curcumin composite nanoparticle (SPI-Cur-NPs)-stabilized Pickering nanoemulsions were converted into microcapsule powders via spray-drying with maltodextrin (MD), trehalose anhydrous (TA), and inulin (IN) as wall materials. Robust intermolecular hydrogen bonds and an amorphous structure were formed using composite wall materials, reducing microcapsule surface fissures while improving encapsulation rate (92.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!