Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To accurately detect tumor marker carbohydrate antigen 72-4 (CA72-4) of serum samples is of great significance for the early diagnosis of malignant tumors. In the present study, MnO/hollow nanobox metal-organic framework (HNM)-AuPtPd nanocomposites were prepared via multi-step synthesis and superposition method and a series of characterizations were carried out. A highly sensitive immunosensor Ab/MnO/HNM-AuPtPd/GCE based on the composite nanomaterial was further prepared and used to detect the tumor marker CA72-4. The constructed immunosensor achieved signal amplification by increasing the electrocatalytic activity to HO by means of the synergistic effect of MnO ultra-thin nanosheets (MnO UNs) and HNM-AuPtPd. At the same time, the electrochemical properties of the immunosensor were analyzed using cyclic voltammetry, electrochemical impedance, amperometry (with the test voltage of -0.4 V), and differential pulse voltammetry. The experimental results showed that the MnO/HNM-AuPtPd nanocomposites were successfully prepared, and the immunosensor Ab/MnO/HNM-AuPtPd/GCE demonstrated an excellent electrochemical performance. The electrochemical immunosensor had the highest detection sensitivity under the optimal experimental conditions, such as incubation pH of 7.0, incubation time of 60 min, with the addition of 15 μL of HO, and in the concentration range 0.001-500 U/mL. It had a low detection limit of 1.78×10 U/mL (S/N = 3). Moreover, the serum sample recovery were in the range from 99.38 to 100.52%. This study provides a new method and experimental basis for the detection of tumor markers in clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-024-06266-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!