AI Article Synopsis

  • A new technique using Total Cardiac Volume (TCV) and CT scans aims to improve pediatric heart transplant outcomes by allowing better size matching of donor and recipient hearts, but current methods require extensive manual work.
  • This study explores a Deep Learning approach, specifically a 3D Convolutional Neural Network (3D-CNN), to automatically measure TCV, demonstrating high accuracy in estimating heart size quickly.
  • With a strong validation performance (average Dice coefficient of 0.94 and mean absolute percent error of 5.5%), the study emphasizes the need for future multicenter trials to enhance the model's applicability across different patient demographics and heart conditions.

Article Abstract

Total Cardiac Volume (TCV)-based size matching using Computed Tomography (CT) is a novel technique to compare donor and recipient heart size in pediatric heart transplant that may increase overall utilization of available grafts. TCV requires manual segmentation, which limits its widespread use due to time and specialized software and training needed for segmentation. This study aims to determine the accuracy of a Deep Learning (DL) approach using 3-dimensional Convolutional Neural Networks (3D-CNN) to calculate TCV, with the clinical aim of enabling fast and accurate TCV use at all transplant centers. Ground truth TCV was segmented on CT scans of subjects aged 0-30 years, identified retrospectively. Ground truth segmentation masks were used to train and test a custom 3D-CNN model consisting of a DenseNet architecture in combination with residual blocks of ResNet architecture. The model was trained on a cohort of 270 subjects and a validation cohort of 44 subjects (36 normal, 8 heart disease retained for model testing). The average Dice similarity coefficient of the validation cohort was 0.94 ± 0.03 (range 0.84-0.97). The mean absolute percent error of TCV estimation was 5.5%. There is no significant association between model accuracy and subject age, weight, or height. DL-TCV was on average more accurate for normal hearts than those listed for transplant (mean absolute percent error 4.5 ± 3.9 vs. 10.5 ± 8.5, p = 0.08). A deep learning-based 3D-CNN model can provide accurate automatic measurement of TCV from CT images. This initial study is limited as a single-center study, though future multicenter studies may enable generalizable and more accurate TCV measurement by inclusion of more diverse cardiac pathology and increasing the training data.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00246-024-03470-4DOI Listing

Publication Analysis

Top Keywords

deep learning
8
total cardiac
8
cardiac volume
8
size matching
8
accurate tcv
8
ground truth
8
3d-cnn model
8
validation cohort
8
absolute percent
8
percent error
8

Similar Publications

Object detection in motion management scenarios based on deep learning.

PLoS One

January 2025

School of Physical Education, Jinjiang College, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.

In athletes' competitions and daily training, in order to further strengthen the athletes' sports level, it is usually necessary to analyze the athletes' sports actions at a specific moment, in which it is especially important to quickly and accurately identify the categories and positions of the athletes, sports equipment, field boundaries and other targets in the sports scene. However, the existing detection methods failed to achieve better detection results, and the analysis found that the reasons for this phenomenon mainly lie in the loss of temporal information, multi-targeting, target overlap, and coupling of regression and classification tasks, which makes it more difficult for these network models to adapt to the detection task in this scenario. Based on this, we propose for the first time a supervised object detection method for scenarios in the field of motion management.

View Article and Find Full Text PDF

We study image segmentation using spatiotemporal dynamics in a recurrent neural network where the state of each unit is given by a complex number. We show that this network generates sophisticated spatiotemporal dynamics that can effectively divide an image into groups according to a scene's structural characteristics. We then demonstrate a simple algorithm for object segmentation that generalizes across inputs ranging from simple geometric objects in grayscale images to natural images.

View Article and Find Full Text PDF

Accurate diagnosis of pancreatic cancer using CT scan images is critical for early detection and treatment, potentially saving numerous lives globally. Manual identification of pancreatic tumors by radiologists is challenging and time-consuming due to the complex nature of CT scan images and variations in tumor shape, size, and location of the pancreatic tumor also make it challenging to detect and classify different types of tumors. Thus, to address this challenge we proposed a four-stage framework of computer-aided diagnosis systems.

View Article and Find Full Text PDF

Optical Coherence Tomography (OCT) offers high-resolution images of the eye's fundus. This enables thorough analysis of retinal health by doctors, providing a solid basis for diagnosis and treatment. With the development of deep learning, deep learning-based methods are becoming more popular for fundus OCT image segmentation.

View Article and Find Full Text PDF

Enhancing the performance of 5ph-IPMSM control plays a crucial role in advancing various innovative applications such as electric vehicles. This paper proposes a new reinforcement learning (RL) control algorithm based twin-delayed deep deterministic policy gradient (TD3) algorithm to tune two cascaded PI controllers in a five-phase interior permanent magnet synchronous motor (5ph-IPMSM) drive system based model predictive control (MPC). The main purpose of the control methodology is to optimize the 5ph-IPMSM speed response either in constant torque region or constant power region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!