Neurodegenerative disorders are devastating disorders characterized by gradual loss of neurons and cognition or mobility impairment. The common pathological features of these diseases are associated with the accumulation of misfolded or aggregation of proteins. The pivotal roles of autophagy and proteostasis in maintaining cellular health and preventing the accumulation of misfolded proteins, which are associated with neurodegenerative diseases like Huntington's disease (HD), Alzheimer's disease (AD), and Parkinson's disease (PD). This article presents an in-depth examination of the interplay between autophagy and proteostasis, highlighting how these processes cooperatively contribute to cellular homeostasis and prevent pathogenic protein aggregate accumulation. Furthermore, the review emphasises the potential therapeutic implications of targeting autophagy and proteostasis to mitigate neurodegenerative diseases. While advancements in research hold promise for developing novel treatments, the article also addresses the challenges and complexities associated with modulating these intricate cellular pathways. Ultimately, advancing understanding of the underlying mechanism of autophagy and proteostasis in neurodegenerative disorders provides valuable insights into potential therapeutic avenues and future research directions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cbdd.14515DOI Listing

Publication Analysis

Top Keywords

autophagy proteostasis
20
neurodegenerative diseases
12
proteostasis neurodegenerative
8
neurodegenerative disorders
8
accumulation misfolded
8
potential therapeutic
8
proteostasis
5
neurodegenerative
5
role autophagy
4
diseases
4

Similar Publications

Attenuating hyperammonemia preserves protein synthesis and muscle mass via restoration of perturbed metabolic pathways in bile duct-ligated rats.

Metab Brain Dis

January 2025

Hepato-Neuro Laboratory, Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900, Rue Saint-Denis - Pavillon R, R08.422, Montréal (Québec), H2X 0A9, Canada.

Sarcopenia and hepatic encephalopathy (HE) are complications of chronic liver disease (CLD), which negatively impact clinical outcomes. Hyperammonemia is considered to be the central component in the pathogenesis of HE, however ammonia's toxic effects have also been shown to impinge on extracerebral organs including the muscle. Our aim was to investigate the effect of attenuating hyperammonemia with ornithine phenylacetate (OP) on muscle mass loss and associated molecular mechanisms in rats with CLD.

View Article and Find Full Text PDF

How close is autophagy-targeting therapy for Alzheimer's disease to clinical use? A summary of autophagy modulators in clinical studies.

Front Cell Dev Biol

January 2025

Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.

Alzheimer's disease (AD) is a neurodegenerative disorder clinically characterized by progressive decline of memory and cognitive functions, and it is the leading cause of dementia accounting for 60%-80% of dementia patients. A pathological hallmark of AD is the accumulation of aberrant protein/peptide aggregates such as extracellular amyloid plaques containing amyloid-beta peptides and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. These aggregates result from the failure of the proteostasis network, which encompasses protein synthesis, folding, and degradation processes.

View Article and Find Full Text PDF

The microglial response to inhibition of Colony-stimulating-factor-1 receptor by PLX3397 differs by sex in adult mice.

Cell Rep

January 2025

Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA; Center for Visual Science, University of Rochester, Rochester, NY 14642, USA. Electronic address:

Microglia, the resident macrophages of the brain, are derived from the yolk sac and colonize the brain before the blood-brain barrier forms. Once established, they expand locally and require Colony-stimulating-factor-1 receptor (CSF1R) signaling for their development and maintenance. CSF1R inhibitors have been used extensively to deplete microglia in the healthy and diseased brain.

View Article and Find Full Text PDF

Protein homeostasis is crucial for maintaining cardiomyocyte (CM) function. Disruption of proteostasis results in accumulation of protein aggregates causing cardiac pathologies such as hypertrophy, dilated cardiomyopathy (DCM), and heart failure. Here, we identify ubiquitin-specific peptidase 5 (USP5) as a critical determinant of protein quality control (PQC) in CM.

View Article and Find Full Text PDF

Synthesis and functional screening of novel inhibitors targeting the HDAC6 zinc finger ubiquitin-binding domain.

Eur J Med Chem

December 2024

SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium. Electronic address:

Histone deacetylase 6 (HDAC6) is a promising target for treating neurodegenerative disorders, several cancer types and viral infections. Unique among HDACs, the HDAC6 isoform possesses a zinc finger ubiquitin-binding domain (UBD) crucial for managing misfolded protein aggregates and facilitating viral infection. HDAC6 binds aggregated polyubiquitinated proteins through its UBD, mediating their transport to the aggresome and subsequent removal via autophagy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!