PIM Kinase Inhibition Sensitizes Neuroblastoma to Doxorubicin.

J Pediatr Surg

Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA. Electronic address:

Published: July 2024

Background: Chemoresistance contributes to relapse in high-risk neuroblastoma. Cancer cells acquire resistance through multiple mechanisms, including drug efflux pumps. In neuroblastoma, multidrug resistance-associated protein-1 (MRP1/ABCC1) efflux pump expression correlates with worse outcomes. These pumps are regulated by PIM kinases, a family of serine-threonine kinases, overexpressed in neuroblastoma. We hypothesized PIM kinase inhibition would sensitize neuroblastoma cells by modulating MRP1.

Methods: Kocak database query evaluated ABCC1, PIM1, PIM2, and PIM3 expression in neuroblastoma patients. SK-N-AS and SK-N-BE(2) cells were treated with doxorubicin or the pan-PIM kinase inhibitor, AZD1208. Flow cytometry assessed intracellular doxorubicin accumulation. AlamarBlue assay measured viability. The lethal dose 50% (LD) of each drug and combination indices (CI) were calculated and isobolograms constructed to determine synergy.

Results: Kocak database query demonstrated positive correlation between PIM genes and ABCC1. PIM kinase inhibition increased intracellular doxorubicin accumulation in both cell lines, suggesting PIM kinase regulation of MRP1. Isobolograms showed synergy between AZD1208 and doxorubicin.

Conclusions: The correlation between PIM and ABCC1 gene expression suggests PIM kinases may contribute to neuroblastoma chemotherapeutic resistance. PIM kinase inhibition increased intracellular doxorubicin accumulation. Combination treatment with AZD1208 and doxorubicin decreased neuroblastoma cell viability in a synergistic fashion. These findings support further investigations of PIM kinase inhibition in neuroblastoma.

Type Of Study: Basic Science Research.

Level Of Evidence: NA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164644PMC
http://dx.doi.org/10.1016/j.jpedsurg.2024.03.014DOI Listing

Publication Analysis

Top Keywords

pim kinase
24
kinase inhibition
20
intracellular doxorubicin
12
doxorubicin accumulation
12
pim
10
neuroblastoma
8
pim kinases
8
kocak database
8
database query
8
correlation pim
8

Similar Publications

New antiplatelet approach: inhibiting Pim kinase to reduce constitutive surface expression of thromboxane A receptor.

J Thromb Haemost

January 2025

Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), and Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University Medical School, Chieti, Italy.

View Article and Find Full Text PDF

Constitutive surface expression of the thromboxane A2 receptor is Pim kinase-dependent.

J Thromb Haemost

January 2025

Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom; Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom. Electronic address:

Background: The thromboxane A2 receptor (TPαR) plays an important role in the amplification of platelet responses during thrombosis. Receptor activity is regulated by internalization and receptor desensitization. The mechanism by which constitutive surface expression of the TPαR is regulated is unknown.

View Article and Find Full Text PDF

Our study explores the complex dynamics of the integrated stress response (ISR) axis, highlighting PIM2 kinase's critical role and its interaction with the BCL2 protein family, uncovering key mechanisms of cell survival and tumor progression. Elevated PIM2 expression, a marker of various cancers, often correlates with disease aggressiveness. Using a model of normal and malignant plasma cells, we show that inhibiting PIM2 kinase inhibits phosphorylated BAD production and activates ISR-mediated NOXA expression.

View Article and Find Full Text PDF

PIM1 instigates endothelial-to-mesenchymal transition to aggravate atherosclerosis.

Theranostics

January 2025

Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Shandong, China.

Article Synopsis
  • Endothelial-to-mesenchymal transition (EndMT) is a process where endothelial cells transform into a different cell type, contributing to the dysfunction that initiates atherosclerosis, but the exact triggers in atherosclerotic environments are not well understood.
  • Research involving single-cell sequencing in mice on a high-fat diet showed that PIM1, a protein, is expressed in both endothelial cells and atherosclerotic lesions and plays a crucial role in the progression of atherosclerosis.
  • Knockdown of PIM1 in endothelial cells reduced atherosclerosis and EndMT by affecting key proteins and pathways associated with cell transformation, suggesting that targeting this pathway could be a potential therapeutic approach.
View Article and Find Full Text PDF

RBM19 promotes the progression of prostate cancer under docetaxel treatment via SNHG21/PIM1 axis.

Cell Biol Toxicol

December 2024

Department of Urology, Jinjiang Municipal Hospital, Luoshan Section, No. 16 Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.

RBM family proteins plays the critical role in the progression of numerous tumors. However, whether RBM family proteins involved in prostate cancer (PCa) progression is remain elucidated. In our study, an RNAi screen containing shRNA library targeting 54 members of the RBM family was applied to identify the critical RBM proteins involved in prostate cancer progression under docetaxel treatment, and RBM19 was selected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!