This paper tries to study the problem of finite-time synchronization for delayed semi-Markov reaction-diffusion systems. Based on the spatial and parametric characteristics of the considered systems, a new asynchronous boundary control scheme is proposed to ensure the finite-time synchronization of the drive and response systems. In the asynchronous boundary control scheme, only an actuator should be placed at the spatial boundary, which is more easier to implement and economical than the other non-boundary control strategies. Besides, the system parameters and controller follow two asynchronous semi-Markov chains for jumping, which is more practical than obeying one semi-Markov chain. Moreover, for the considered systems, we proposes a new lemma of finite-time stability, and by employing the inequality methods and variable substitution, we derive the criterion of finite-time synchronization and a correlative corollary. Finally, a numerical example and an application example on secure communication are carried out to support the developed approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2024.03.030 | DOI Listing |
ISA Trans
January 2025
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of RF Circuits and systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China. Electronic address:
Cooperative formation flight of multiple aerial robotic vehicles (ARVs) is extensively adopted in emergency rescue and collaborative transport. But the time-varying complex disturbances are inevitable in the cooperative formation flight of multiple ARVs, which can affect the formation stability of multi-ARV systems. This paper investigates the robust formation control problems for multiple ARVs with time-varying disturbances.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.
The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum.
View Article and Find Full Text PDFNeural Netw
January 2025
School of Artificial Intelligence and Automation, Image Processing and Intelligent Control Key Laboratory of Education Ministry of China, Huazhong University of Science and Technology, Wuhan 430074, China. Electronic address:
This work concentrates on solving the finite-time H output synchronization (FTHOS) issue of directed coupled reaction-diffusion neural networks (DCRDNNs) with multiple delayed and adaptive output couplings in the presence of external disturbances. Based on the output information, an adaptive law to adjust output coupling weights and a controller are respectively developed to ensure that the DCRDNNs achieve FTHOS. Then, in the special case of no external disturbances, a corollary on the finite-time output synchronization (FTOS) of the DCRDNNs with multiple delayed and adaptive output couplings is provided.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt.
Many existing control techniques proposed in the literature tend to overlook faults and physical limitations in the systems, which significantly restricts their applicability to practical, real-world systems. Consequently, there is an urgent necessity to advance the control and synchronization of such systems in real-world scenarios, specifically when faced with the challenges posed by faults and physical limitations in their control actuators. Motivated by this, our study unveils an innovative control approach that combines a neural network-based sliding mode algorithm with fuzzy logic systems to handle nonlinear systems.
View Article and Find Full Text PDFEntropy (Basel)
November 2024
School of Statistics and Data Science, Nanjing Audit University, Nanjing 211815, China.
With the widespread application of chaotic systems in many fields, research on chaotic systems is becoming increasingly in-depth. This article first proposes a new dynamic model of financial risk contagion based on financial principles and discusses some basic dynamic characteristics of the new chaotic system, such as equilibrium points, dissipativity, Poincaré diagrams, bifurcation diagrams, etc. Secondly, with the consideration of privacy during data transmission, the method was designed to protect the privacy of controlled systems in finite time based on perturbation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!