Background: Traumatic brain injury (TBI), as a major public health problem, is characterized by high incidence rate, disability rate, and mortality rate. Neuroinflammation plays a crucial role in the pathogenesis of TBI. Triggering receptor expressed on myeloid cells-1 (TREM-1) is recognized as an amplifier of the inflammation in diseases of the central nervous system (CNS). However, the function of TREM-1 remains unclear post-TBI. This study aimed to investigate the function of TREM-1 in neuroinflammation induced by TBI.
Methods: Brain water content (BWC), modified neurological severity score (mNSS), and Morris Water Maze (MWM) were measured to evaluate the effect of TREM-1 inhibition on nervous system function and outcome after TBI. TREM-1 expression in vivo was evaluated by Western blotting. The cellular localization of TREM-1 in the damaged region was observed via immunofluorescence staining. We also conducted Western blotting to examine expression of SYK, p-SYK and other downstream proteins.
Results: We found that inhibition of TREM-1 reduced brain edema, decreased mNSS and improved neurobehavioral outcomes after TBI. It was further determined that TREM-1 was expressed on microglia and modulated subtype transition of microglia. Inhibition of TREM-1 alleviated neuroinflammation, which was associated with SYK/p38MAPK signaling pathway.
Conclusions: These findings suggest that TREM-1 can be a potential clinical therapeutic target for alleviating neuroinflammation after TBI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2024.148907 | DOI Listing |
Cell Death Dis
January 2025
NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China.
Neuroinflammation is a key factor in the pathogenesis of Parkinson's disease (PD). Activated microglia in the central nervous system (CNS) and infiltration of peripheral immune cells contribute to dopaminergic neuron loss. However, the role of peripheral immune responses, particularly triggering receptor expressed on myeloid cells-1 (TREM-1), in PD remains unclear.
View Article and Find Full Text PDFFront Immunol
December 2024
SignaBlok, Inc., Shrewsbury, MA, United States.
TREM-1 and TREM-2 as Therapeutic Targets: Clinical Challenges and Perspectives.
View Article and Find Full Text PDFJCI Insight
December 2024
Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
Systemic sclerosis (SSc) is characterized by immune system failure, vascular insult, autoimmunity, and tissue fibrosis. TGF-β is a crucial mediator of persistent myofibroblast activation and aberrant extracellular matrix production in SSc. The factors responsible for this are unknown.
View Article and Find Full Text PDFCell Signal
December 2024
Postgraduate Training Base of General Hospital of Northern Theater Command, Jinzhou Medical University, Jinzhou, Liaoning 121001, PR China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China. Electronic address:
Inflammation and infiltration of immune cells are intricately linked to the pathogenesis of atrial fibrillation (AF). Triggering receptor expressed on myeloid cells-1 (TREM-1), an enhancer of inflammation, is implicated in various cardiovascular disorders. However, the precise role and potential mechanisms of TREM-1 in the development of AF remain ambiguous.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!