Wastewater polluted by organics can be treated by using electro-generated active chlorine, even if this promising route presents some important drawbacks such as the production of chlorinated by-products. Here, for the first time, this process was studied in a microfluidic electrochemical reactor with a very small inter-electrode distance (145 μm) using a water solution of NaCl and phenol and a BDD anode. The potential production of chloroacetic acids, chlorophenols, carboxylic acids, chlorate and perchlorate was carefully evaluated. It was shown, for the first time, up to our knowledge, that the use of the microfluidic device allows to perform the treatment under a continuous mode and to achieve higher current efficiencies and a lower generation of some important by-products such as chlorate and perchlorate. As an example, the use of the microfluidic apparatus equipped with an Ag cathode allowed to achieve a high removal of total organic carbon (about 76%) coupled with a current efficiency of 17% and the production of a small amount of chlorate (about 30 ppm) and no perchlorate. The effect of many parameters (namely, flow rate, current density and nature of cathode) was also investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.141855DOI Listing

Publication Analysis

Top Keywords

active chlorine
8
microfluidic electrochemical
8
chlorate perchlorate
8
oxidation organics
4
organics water
4
water active
4
chlorine performed
4
microfluidic
4
performed microfluidic
4
electrochemical reactors
4

Similar Publications

Engineering Subnanometric Electronic Interaction between Ru and Mn in Zeolite Boosts Catalytic Oxidation of Dichloromethane.

Environ Sci Technol

January 2025

Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.

Designing catalysts with both activity and stability remains a grand challenge for the removal of chlorinated volatile organic compounds (CVOCs) by catalytic oxidation. Herein, the Ru-Mn subnanometric species encapsulated in ZSM-5 zeolite (RuMn@Z) was synthesized. It shows that the 90% conversion of dichloromethane is as low as 320 °C, which is significantly lower than that of Ru@Z (350 °C) and the impregnation catalyst (RuMn/Z, 355 °C).

View Article and Find Full Text PDF

Macrophage membrane-camouflaged pure-drug nanomedicine for synergistic chemo- and interstitial photodynamic therapy against glioblastoma.

Acta Biomater

January 2025

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Glioblastoma (GBM) persists as a highly fatal malignancy, with current clinical treatments showing minimal progress over years. Interstitial photodynamic therapy (iPDT) holds promise due to its minimally invasive nature and low toxicity but is impeded by poor photosensitizer penetration and inadequate GBM targeting. Here, we developed a biomimetic pure-drug nanomedicine (MM@CT), which co-assembles the photosensitizer chlorin e6 (Ce6) and the first-line chemotherapeutic drug (temozolomide, TMZ) for GBM, then camouflaged with macrophage membranes.

View Article and Find Full Text PDF

The microbiota of cork and yellow stain as a model for a new route for the synthesis of chlorophenols and chloroanisoles from the microbial degradation of suberin and/or lignin.

Microbiome

January 2025

Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.

Article Synopsis
  • Cork is primarily used for wine bottle stoppers, but it can contain 2,4,6-trichloroanisole, which causes a musty odor that negatively affects wine quality and leads to financial losses.
  • The presence of yellow stain in cork indicates a degradation linked to higher microbial populations, particularly filamentous fungi that break down lignin, and this microbiota contributes to the formation of chlorophenols and chloroanisoles.
  • Research identified specific fungal and bacterial species associated with yellow stain and demonstrated that certain strains can convert p-hydroxybenzoate into phenol, which can then be chlorinated, potentially leading to the development of 2,4,6-trichlorophenol.
View Article and Find Full Text PDF

Defect engineering is considered one of the most powerful strategies for regulating the catalytic activity of electrocatalysts. A deep understanding of the defect-involved mechanism in electrocatalytic process is of great importance but remains a challenging task. In this study, an anionic Se-vacancy (V) was introduced into iron diselenide (FeSe) nanoarrays, enabling the catalyst to exhibit improved electrocatalytic performance for sulfion oxidation reaction (SOR).

View Article and Find Full Text PDF

Palladium Nanosheet Enables Synergistic Electrocatalytic Dehalogenation via Direct and Indirect Electron Transfer Mechanisms.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.

Electrocatalytic dehalogenation is a promising method for the remediation of chlorinated organic pollutants. The dehalogenation performance is controlled by catalytic activity, and the underlying electrocatalytic dehalogenation mechanisms need to be carefully investigated for guiding the design of catalyst. Here we report the preparation of a new Pd-based catalyst with a nanosheet structure (Pd NS) by a simple wet-chemical reduction method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!