Biomimetic stress-relaxing hydrogels with reversible crosslinks attract significant attention for stem cell tissue regeneration compared with elastic hydrogels. However, stress-relaxing hyaluronic acid (HA)-based hydrogels fabricated using conventional technologies lack stability, biocompatibility, and mechanical tunability. Here, it is aimed to address these challenges by incorporating calcium or phosphate components into the HA backbone, which allows reversible crosslinking of HA with alginate to form interpenetrating networks, offering stability and mechanical tunability for mimicking cartilage. Diverse stress-relaxing hydrogels (τ1/2; SR50, 60-2000 s) are successfully prepared at ≈3 kPa stiffness with self-healing and shear-thinning abilities, favoring hydrogel injection. In vitro cell experiments with RNA sequencing analysis demonstrate that hydrogels tune chondrogenesis in a biphasic manner (hyaline or calcified) depending on the stress-relaxation properties and phosphate components. In vivo studies confirm the potential for biphasic chondrogenesis. These results indicate that the proposed stress-relaxing HA-based hydrogel with biphasic chondrogenesis (hyaline or calcified) is a promising material for cartilage regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202400043 | DOI Listing |
Regen Biomater
November 2024
Zhejiang Top-Medical Medical Dressing Co. Ltd, Wenzhou, Zhejiang 325025, China.
Decellularization is the process of obtaining acellular tissues with low immunogenic cellular components from animals or plants while maximizing the retention of the native extracellular matrix structure, mechanical integrity and bioactivity. The decellularized tissue obtained through the tissue decellularization technique retains the structure and bioactive components of its native tissue; it not only exhibits comparatively strong mechanical properties, low immunogenicity and good biocompatibility but also stimulates neovascularization at the implantation site and regulates the polarization process of recruited macrophages, thereby promoting the regeneration of damaged tissue. Consequently, many commercial products have been developed as promising therapeutic strategies for the treatment of different tissue defects and lesions, such as wounds, dura, bone and cartilage defects, nerve injuries, myocardial infarction, urethral strictures, corneal blindness and other orthopedic applications.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.
Deer antler-derived reserve mesenchyme cells (RMCs) are a promising source of cells for cartilage regeneration therapy due to their chondrogenic differentiation potential. However, the regulatory mechanism has not yet been elucidated. In this study, we analyzed the role of microRNAs (miRNAs) in regulating the differentiation of RMCs and in the post-transcriptional regulation of chondrogenesis and hypertrophic differentiation at the molecular and histological levels.
View Article and Find Full Text PDFPharmaceutics
December 2024
Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.
The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Department of Orthopaedic Surgery and Musculoskeletal Tissue Regeneration, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074 Wuerzburg, Germany.
The aim of our study was to examine the combined effects of tranexamic acid (TXA) and vancomycin powder (VP) on chondrocytes in vitro. Despite the use of TXA and VP being linked to a reduced risk of extensive postoperative blood loss and periprosthetic joint infections (PJIs) in TKA, the possible cytotoxic side effects on periarticular cell types remain unclear. Human chondrocytes were harvested from hyaline cartilage and expanded in monolayer culture before being simultaneously exposed to different concentrations of TXA and VP for varying exposure times.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon.
The limited self-repair capacity of cartilage due to its avascular and aneural nature leads to minimal regenerative ability. Autologous chondrocyte transplantation (ACT) is a popular treatment for cartilage defects but faces challenges due to chondrocyte dedifferentiation in later passages, which results in undesirable fibroblastic phenotypes. A promising treatment for cartilage injuries and diseases involves tissue engineering using cells (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!