AI Article Synopsis

  • Researchers are developing new hydrogels for stem cell tissue regeneration that can mimic cartilage more effectively than traditional elastic hydrogels.
  • The new hydrogels use hyaluronic acid (HA) combined with calcium or phosphate to create a stable, tunable material with excellent self-healing and shear-thinning properties.
  • In vitro and in vivo studies show that these hydrogels can promote two types of cartilage growth (hyaline and calcified) depending on their stress-relaxation characteristics, making them promising for cartilage regeneration.

Article Abstract

Biomimetic stress-relaxing hydrogels with reversible crosslinks attract significant attention for stem cell tissue regeneration compared with elastic hydrogels. However, stress-relaxing hyaluronic acid (HA)-based hydrogels fabricated using conventional technologies lack stability, biocompatibility, and mechanical tunability. Here, it is aimed to address these challenges by incorporating calcium or phosphate components into the HA backbone, which allows reversible crosslinking of HA with alginate to form interpenetrating networks, offering stability and mechanical tunability for mimicking cartilage. Diverse stress-relaxing hydrogels (τ1/2; SR50, 60-2000 s) are successfully prepared at ≈3 kPa stiffness with self-healing and shear-thinning abilities, favoring hydrogel injection. In vitro cell experiments with RNA sequencing analysis demonstrate that hydrogels tune chondrogenesis in a biphasic manner (hyaline or calcified) depending on the stress-relaxation properties and phosphate components. In vivo studies confirm the potential for biphasic chondrogenesis. These results indicate that the proposed stress-relaxing HA-based hydrogel with biphasic chondrogenesis (hyaline or calcified) is a promising material for cartilage regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202400043DOI Listing

Publication Analysis

Top Keywords

cartilage regeneration
8
stress-relaxing hydrogels
8
mechanical tunability
8
phosphate components
8
hyaline calcified
8
biphasic chondrogenesis
8
hydrogels
5
development injectable
4
biphasic
4
injectable biphasic
4

Similar Publications

Decellularization of fish tissues for tissue engineering and regenerative medicine applications.

Regen Biomater

November 2024

Zhejiang Top-Medical Medical Dressing Co. Ltd, Wenzhou, Zhejiang 325025, China.

Decellularization is the process of obtaining acellular tissues with low immunogenic cellular components from animals or plants while maximizing the retention of the native extracellular matrix structure, mechanical integrity and bioactivity. The decellularized tissue obtained through the tissue decellularization technique retains the structure and bioactive components of its native tissue; it not only exhibits comparatively strong mechanical properties, low immunogenicity and good biocompatibility but also stimulates neovascularization at the implantation site and regulates the polarization process of recruited macrophages, thereby promoting the regeneration of damaged tissue. Consequently, many commercial products have been developed as promising therapeutic strategies for the treatment of different tissue defects and lesions, such as wounds, dura, bone and cartilage defects, nerve injuries, myocardial infarction, urethral strictures, corneal blindness and other orthopedic applications.

View Article and Find Full Text PDF

Deer antler reserve mesenchyme cells modified with miR-145 promote chondrogenesis in cartilage regeneration.

Front Vet Sci

December 2024

Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.

Deer antler-derived reserve mesenchyme cells (RMCs) are a promising source of cells for cartilage regeneration therapy due to their chondrogenic differentiation potential. However, the regulatory mechanism has not yet been elucidated. In this study, we analyzed the role of microRNAs (miRNAs) in regulating the differentiation of RMCs and in the post-transcriptional regulation of chondrogenesis and hypertrophic differentiation at the molecular and histological levels.

View Article and Find Full Text PDF

Forty Years of the Use of Cells for Cartilage Regeneration: The Research Side.

Pharmaceutics

December 2024

Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.

The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair.

View Article and Find Full Text PDF

Does Combined Treatment with Tranexamic Acid and Vancomycin Affect Human Chondrocytes In Vitro?

Pharmaceuticals (Basel)

November 2024

Department of Orthopaedic Surgery and Musculoskeletal Tissue Regeneration, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074 Wuerzburg, Germany.

The aim of our study was to examine the combined effects of tranexamic acid (TXA) and vancomycin powder (VP) on chondrocytes in vitro. Despite the use of TXA and VP being linked to a reduced risk of extensive postoperative blood loss and periprosthetic joint infections (PJIs) in TKA, the possible cytotoxic side effects on periarticular cell types remain unclear. Human chondrocytes were harvested from hyaline cartilage and expanded in monolayer culture before being simultaneously exposed to different concentrations of TXA and VP for varying exposure times.

View Article and Find Full Text PDF

The limited self-repair capacity of cartilage due to its avascular and aneural nature leads to minimal regenerative ability. Autologous chondrocyte transplantation (ACT) is a popular treatment for cartilage defects but faces challenges due to chondrocyte dedifferentiation in later passages, which results in undesirable fibroblastic phenotypes. A promising treatment for cartilage injuries and diseases involves tissue engineering using cells (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!