Azelaic acid can efficiently compete for the auxin binding site TIR1, altering auxin polar transport, gravitropic response, and root growth and architecture in Arabidopsisthaliana roots.

Plant Physiol Biochem

Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain.

Published: May 2024

The present study investigates the phytotoxic potential of azelaic acid (AZA) on Arabidopsis thaliana roots. Effects on root morphology, anatomy, auxin content and transport, gravitropic response and molecular docking were analysed. AZA inhibited root growth, stimulated lateral and adventitious roots, and altered the root apical meristem by reducing meristem cell number, length and width. The treatment also slowed down the roots' gravitropic response, likely due to a reduction in statoliths, starch-rich organelles involved in gravity perception. In addition, auxin content, transport and distribution, together with PIN proteins' expression and localisation were altered after AZA treatment, inducing a reduction in auxin transport and its distribution into the meristematic zone. Computational simulations showed that AZA has a high affinity for the auxin receptor TIR1, competing with auxin for the binding site. The AZA binding with TIR1 could interfere with the normal functioning of the TIR1/AFB complex, disrupting the ubiquitin E3 ligase complex and leading to alterations in the response of the plant, which could perceive AZA as an exogenous auxin. Our results suggest that AZA mode of action could involve the modulation of auxin-related processes in Arabidopsis roots. Understanding such mechanisms could lead to find environmentally friendly alternatives to synthetic herbicides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.108592DOI Listing

Publication Analysis

Top Keywords

gravitropic response
12
azelaic acid
8
auxin
8
auxin binding
8
binding site
8
transport gravitropic
8
root growth
8
auxin content
8
content transport
8
transport distribution
8

Similar Publications

Statoliths function in gravity perception in plants: yes, no, yes!

Planta

January 2025

Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA.

The starch-statolith theory was established science for a century when the existence of gravitropic, starchless mutants questioned its premise. However, detailed kinetic studies support a statolith-based mechanism for graviperception. Gravitropism is the directed growth of plants in response to gravity, and the starch-statolith hypothesis has had a consensus among scientists as the accepted model for gravity perception.

View Article and Find Full Text PDF

ABA-auxin cascade regulates crop root angle in response to drought.

Curr Biol

January 2025

Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Enhancing drought resistance through the manipulation of root system architecture (RSA) in crops represents a crucial strategy for addressing food insecurity challenges. Abscisic acid (ABA) plays important roles in drought tolerance; yet, its molecular mechanisms in regulating RSA, especially in cereal crops, remain unclear. In this study, we report a new mechanism whereby ABA mediates local auxin biosynthesis to regulate root gravitropic response, thereby controlling the alteration of RSA in response to drought in cereal crops.

View Article and Find Full Text PDF

Dissecting sequence-structure-function-diversity in plant cryptochromes.

Plant Sci

December 2024

Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, WB 700073,  India. Electronic address:

Ubiquitous to every stratum of life, cryptochromes regulate numerous light dependent functions in terrestrial plants. These include light-dependent transcription, circadian rhythm, inhibition of hypocotyl elongation, programmed cell death, promotion of floral initiation, mediation of gravitropic response, responding to biotic and abiotic stress etc. There have been quite a few seminal reviews including on plant cryptochromes, focusing mostly on the detailed functional aspects.

View Article and Find Full Text PDF

Not only the top: Type I topoisomerases function in multiple tissues and organs development in plants.

J Adv Res

December 2024

Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China. Electronic address:

Background: DNA topoisomerases (TOPs) are essential components in a diverse range of biological processes including DNA replication, transcription and genome integrity. Although the functions and mechanisms of TOPs, particularly type I TOP (TOP1s), have been extensively studied in bacteria, yeast and animals, researches on these proteins in plants have only recently commenced.

Aim Of Review: In this review, the function and mechanism studies of TOP1s in plants and the structural biology of plant TOP1 are presented, providing readers with a comprehensive understanding of the current research status of this essential enzyme.

View Article and Find Full Text PDF

The BCM1-EGY1 module balances chlorophyll biosynthesis and breakdown to confer chlorophyll homeostasis in land plants.

Mol Plant

January 2025

School of Biological Sciences, The University of Hong Kong, Hong Kong SAR 999077, China; Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstrasse13, Building 12, 10115 Berlin, Germany; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China. Electronic address:

Article Synopsis
  • Chlorophyll metabolism has adapted over plant evolution, with angiosperms requiring precise coordination between chlorophyll production and degradation to maintain balance.
  • The protein BCM1 has evolved to interact with enzymes GUN4 and SGR1, which is crucial for promoting chlorophyll synthesis while inhibiting its breakdown.
  • The study highlights the BCM1-EGY1 module as a key mechanism ensuring chlorophyll homeostasis in land plants, showcasing an evolutionary strategy to meet metabolic challenges in terrestrial habitats.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!