Rechargeable Zn-MnO batteries using mild water electrolytes have garnered significant interest owing to their impressive theoretical energy density and eco-friendly characteristics. However, MnO suffers from huge structural changes during the cycles, resulting in very poor stability at high charge-discharge depths. Briefly, the above problems are caused by slow kinetic processes and the dissolution of Mn atoms in the cycles. In this paper, a 2D homojunction electrode material (δ/ε-MnO) based on δ-MnO and ε-MnO has been prepared by a two-step electrochemical deposition method. According to the DFT calculations, the charge transfer and bonding between interfaces result in the generation of electronic states near the Fermi surface, giving δ/ε-MnO a more continuous distribution of electron states and better conductivity, which is conducive to the rapid insertion/extraction of Zn and H. Moreover, the strongly coupled Mn-O-Mn interfacial bond can effectively impede dissolution of Mn atoms and thus maintain the structural integrity of δ/ε-MnO during the cycles. Accordingly, the δ/ε-MnO cathode exhibits high capacity (383 mAh g at 0.1 A g), superior rate performance (150 mAh g at 5 A g), and excellent cycling stability over 2000 cycles (91.3% at 3 A g). Profoundly, this unique homojunction provides a novel paradigm for reasonable selection of different components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c00556 | DOI Listing |
Int J Biol Macromol
January 2025
The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), College of Chemistry, Sichuan University, Chengdu 610064, China.
The development of bio-based flame retardants has garnered significant attention, however, significant challenges remain in achieving efficient flame retardancy and eco-friendly preparation methods. Herein, we propose a facile, atomic-efficient, and eco-friendly strategy for synthesizing a trinity chitosan-based flame retardant, phosphite-protonated chitosan (PCS). The chemical structure was systematically analyzed and the impact of varying degrees of protonation on the dissolution behavior and rheological properties were investigated.
View Article and Find Full Text PDFToxicol In Vitro
January 2025
Atomic Energy and Alternative Energies Commission (CEA), Laboratory of Radiotoxicology, CEA, Paris-Saclay University, Bruyères-le-Châtel, France.
Internal contamination by inhalation of plutonium poorly soluble compounds leads to their long time retention in alveolar macrophages inducing delayed pathology development. As previous studies highlighted co-localization of retained Pu and inflammatory lesions, this study was designed to assess the combined effect of the reference treatment (DTPA) and anti-inflammatory drugs on Pu-induced early response of macrophages in vitro. Pu colloids, mimicking poorly soluble Pu, were characterized using filtration and solid-state nuclear track detectors CR39.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
University of Zagreb, Faculty of Science, Department of Chemistry, Zagreb, HR-10000, Croatia.
The phenomenon of solid dissolution into a solution constitutes a fundamental aspect in both natural and industrial contexts. Nevertheless, its intricate nature at the microscale poses a significant challenge for precise quantitative characterization at a foundational level. In this work, the influence across three specific cleavage planes, namely (100), (111), and (110) on the dissolution kinetics of fluorite in aqueous environments was examined from both experimental and theoretical standpoints.
View Article and Find Full Text PDFSmall
January 2025
Key Lab of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing, 100102, P. R. China.
A nitrogen-coordinated Fe single-atom catalyst (SA Fe-N/C) is synthesized using a homogeneous ethanol-based dissolution system with bamboo kraft lignin serving as the carbon source. Uniformly dispersed Fe atoms with an interatomic distance of less than 2 Å throughout the SA Fe-N/C structure are revealed through X-ray absorption spectral analysis and HAADF-STEM images, which possessed a high Fe loading of 2.69%.
View Article and Find Full Text PDFLangmuir
January 2025
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, P. R. China.
Understanding the interfacial interaction mechanisms between oil and minerals is of vital importance in the applications of petroleum production and environmental protection. In this work, the interactions of dodecane with mica and calcite in aqueous media were investigated by using the drop probe technique based on atomic force microscopy. For the dodecane-mica interactions, the electrical double layer (EDL) repulsion dominated in 10 mM NaCl solution, and a higher pH facilitated the detachment of dodecane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!