SR45a plays a key role in enhancing cotton resistance to Verticillium dahliae by alternative splicing of immunity genes.

Plant J

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.

Published: July 2024

Alternative splicing (AS) of pre-mRNAs increases the diversity of transcriptome and proteome and plays fundamental roles in plant development and stress responses. However, the prevalent changes in AS events and the regulating mechanisms of plants in response to pathogens remain largely unknown. Here, we show that AS changes are an important mechanism conferring cotton immunity to Verticillium dahliae (Vd). GauSR45a, encoding a serine/arginine-rich RNA binding protein, was upregulated expression and underwent AS in response to Vd infection in Gossypium australe, a wild diploid cotton species highly resistant to Vd. Silencing GauSR45a substantially reduced the splicing ratio of Vd-induced immune-associated genes, including GauBAK1 (BRI1-associated kinase 1) and GauCERK1 (chitin elicitor receptor kinase 1). GauSR45a binds to the GAAGA motif that is commonly found in the pre-mRNA of genes essential for PTI, ETI, and defense. The binding between GauSR45a and the GAAGA motif in the pre-mRNA of BAK1 was enhanced by two splicing factors of GauU2AF35B and GauU1-70 K, thereby facilitating exon splicing; silencing either AtU2AF35B or AtU1-70 K decreased the resistance to Vd in transgenic GauSR45a Arabidopsis. Overexpressing the short splicing variant of BAK1GauBAK1.1 resulted in enhanced Verticillium wilt resistance rather than the long one GauBAK1.2. Vd-induced far more AS events were in G. barbadense (resistant tetraploid cotton) than those in G. hirsutum (susceptible tetraploid cotton) during Vd infection, indicating resistance divergence in immune responses at a genome-wide scale. We provided evidence showing a fundamental mechanism by which GauSR45a enhances cotton resistance to Vd through global regulation of AS of immunity genes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.16750DOI Listing

Publication Analysis

Top Keywords

cotton resistance
8
verticillium dahliae
8
alternative splicing
8
immunity genes
8
gaaga motif
8
tetraploid cotton
8
cotton
6
splicing
6
gausr45a
6
resistance
5

Similar Publications

Establishing best practices for insect resistance management: a new paradigm for genetically engineered toxins in cotton expressing Mpp51Aa2.

J Econ Entomol

January 2025

Department of Entomology and Plant Pathology and the North Carolina Plant Sciences Institute, NC State University, Raleigh, NC, USA.

Debate over resistance management tactics for genetically engineered (GE) crops expressing insecticidal toxins is not new. For several decades, researchers, regulators, and agricultural industry scientists have developed strategies to limit the evolution of resistance in populations of lepidopteran and coleopteran pests. A key attribute of many of these events was insecticide resistance management (IRM) strategies designed around a presumed high-dose expression sufficient to kill 99.

View Article and Find Full Text PDF

Identification and Analysis of the Plasma Membrane H-ATPase Gene Family in Cotton and Its Roles in Response to Salt Stress.

Plants (Basel)

December 2024

Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China.

Plant plasma membrane (PM) H-ATPase functions as a proton-motive force by exporting cellular protons to establish a transmembrane chemical gradient of H ions and an accompanying electrical gradient. These gradients are crucial for plant growth and development and for plant responses to abiotic and biotic stresses. In this study, a comprehensive identification of the PM H-ATPase gene family was conducted across four cotton species.

View Article and Find Full Text PDF

Transcriptome Analysis Reveals Key Pathways and Genes Involved in Lodging Resistance of Upland Cotton.

Plants (Basel)

December 2024

The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832003, China.

Lodging resistance is one of the most important traits of machine-picked cotton. Lodging directly affects the cotton yield, quality and mechanical harvesting effect. However, there are only a few reports on the lodging resistance of cotton.

View Article and Find Full Text PDF

Brown planthoppers (BPHs, Stål) are a major threat to rice cultivation in Asia, necessitating the development of pest-resistant varieties for effective management. However, the adaptability of BPHs has resulted in the development of virulent populations, such as biotype Y BPHs, which exhibit significant virulence against the rice variety YHY15 that harbors the resistance gene . The various response mechanisms of BPH populations to resistant rice varieties are critical yet underexplored.

View Article and Find Full Text PDF

The Changes in Cross-Resistance, Fitness, and Feeding Behavior in as Their Resistance to Sulfoxaflor Declines.

Insects

November 2024

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

The increasing resistance in field populations to sulfoxaflor and many different types of insecticides represents a significant challenge in protecting cotton production in China. Although resistant pests were able to regain their susceptibility to insecticides after the reduction in insecticide applications, some of their biological parameters remained different from susceptible strains. The resistance to sulfoxaflor was unstable in after the loss of selective pressure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!