Fuel-driven dissipative formation of disulfide bonds using competing oxidative activation and reductive deactivation presents a possibly very versatile avenue for autonomous materials design. However, this is challenging to realize because of the direct annihilation of oxidizing fuel and a deactivating reducing agent. We overcome this challenge by introducing a redox-based enzymatic reaction network (ERN), enabling the dissipative disulfide formation for molecularly dissolved thiols in a fully autonomous manner. Moreover, the ERN allows for programming hydrogel lifetimes by utilizing thiol-terminated star polymers (sPEG-SH). The ERN can be customized to operate with aliphatic and aromatic thiols and should thus be broadly applicable to functional thiols.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c02680 | DOI Listing |
Protein Sci
February 2025
Department of Chemistry, Institute of Biochemistry, BOKU University, Vienna, Austria.
Prokaryotic heme biosynthesis in Gram-positive bacteria follows the coproporphyrin-dependent heme biosynthesis pathway. The last step in this pathway is catalyzed by the enzyme coproheme decarboxylase, which oxidatively transforms two propionate groups into vinyl groups yielding heme b. The catalytic reaction cycle of coproheme decarboxylases exhibits four different states: the apo-form, the substrate (coproheme)-bound form, a transient three-propionate intermediate form (monovinyl, monopropionate deuteroheme; MMD), and the product (heme b)-bound form.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. Electronic address:
Low levels of human norovirus (HuNoV) in food and environment present challenges for nucleic acid detection. This study reported an evaporation-enhanced hydrogel digital reverse transcription loop-mediated isothermal amplification (HD RT-LAMP) with interfacial enzymatic reaction for sensitive HuNoV quantification in food and water. By drying samples on a chamber array chip, HuNoV particles were enriched in situ.
View Article and Find Full Text PDFBioresour Technol
January 2025
University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev trg 19, HR-10000 Zagreb, Croatia. Electronic address:
Efforts to reduce the impact of chemical processes on the environment are leading to a shift to enzymatic alternatives, with laccases standing out for their versatile substrate oxidation capabilities. This study addresses the improvement of biocatalytic reactions by deep eutectic solvents (DES), in particular DES-based aqueous two-phase systems (ATPS) for the extraction of biomolecules. Continuous laccase extraction from crude samples was achieved using a DES-based ATPS, which was first optimized in a batch extractor and later intensified in a microextractor.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cytobiology and Proteomics, Medical University of Lodz, 92-215 Lodz, Poland.
Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.
View Article and Find Full Text PDFBiomolecules
January 2025
Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
The Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) is a multidomain protein consisting of two protein-protein interaction domains, the Src homology 2 (SH2) domain, and the proline-rich region (PRR), as well as three phosphoinositide-binding domains, the pleckstrin homology-like (PHL) domain, the 5-phosphatase (5PPase) domain, and the C2 domain. SHIP1 is commonly known for its involvement in the regulation of the PI3K/AKT signaling pathway by dephosphorylation of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P) at the D5 position of the inositol ring. However, the functional role of each domain of SHIP1 for the regulation of its enzymatic activity is not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!