The selection of proper reference genes is critical for accurate gene expression analysis in all fields of biological and medical research, mainly because there are many distinctions between different tissues and specimens. Given this variability, even in known classic reference genes, demands of a comprehensive analysis platform is needed to identify the most suitable genes for each study. For this purpose, we present an analysis tool for assisting in decision-making in the analysis of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) data. EndoGeneAnalyzer, an open-source web tool for reference gene analysis in RT-qPCR studies, was used to compare the groups/conditions under investigation. This interactive application offers an easy-to-use interface that allows efficient exploration of datasets. Through statistical and stability analyses, EndoGeneAnalyzer assists in the select of the most appropriate reference gene or set of genes for each condition. It also allows researchers to identify and remove unwanted outliers. Moreover, EndoGeneAnalyzer provides a graphical interface to compare the evaluated groups, providing a visually informative differential analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10990236PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299993PLOS

Publication Analysis

Top Keywords

reference genes
12
reference gene
8
analysis
6
reference
5
genes
5
endogeneanalyzer
4
endogeneanalyzer tool
4
tool selection
4
selection validation
4
validation reference
4

Similar Publications

Objectives: We assessed HIV-1 drug resistance profiles among people living with HIV (PLWH) with detectable viral load (VL) and on dolutegravir-based antiretroviral therapy (ART) in Botswana.

Methods: The study utilised available 100 residual HIV-1 VL samples from unique PLWH in Francistown who had viraemia at-least 6 months after initiating ART in Botswana's national ART program from November 2023 to January 2024. Viraemia was categorized as low-level viraemia (LLV) (VL: 200-999 copies/mL) or virologic failure (VF) (VL ≥1000 copies/mL).

View Article and Find Full Text PDF

is a traditional Chinese medicinal herb rich in various bioactive secondary metabolites, such as alkaloids and flavonoids, and exhibits remarkable resistance to abiotic stress. The WRKY transcription factor (TF) family is one of the largest plant-specific TF families and plays a crucial role in plant growth, development, and responses to abiotic stress. However, a comprehensive genome-wide analysis of the WRKY gene family in has not yet been conducted.

View Article and Find Full Text PDF

is the causative agent of the venereal disease trichomoniasis which infects men and women globally and is associated with serious outcomes during pregnancy and cancers of the human reproductive tract. Trichomonads parasitize a range of hosts in addition to humans including birds, livestock, and domesticated animals. Recent genetic analysis of trichomonads recovered from columbid birds has provided evidence that these parasite species undergo frequent host-switching, and that a current epoch spillover event from columbids likely gave rise to in humans.

View Article and Find Full Text PDF

Typical high-throughput single-cell RNA-sequencing (scRNA-seq) analyses are primarily conducted by (pseudo)alignment, through the lens of annotated gene models, and aimed at detecting differential gene expression. This misses diversity generated by other mechanisms that diversify the transcriptome such as splicing and V(D)J recombination, and is blind to sequences missing from imperfect reference genomes. Here, we present sc-SPLASH, a highly efficient pipeline that extends our SPLASH framework for statistics-first, reference-free discovery to barcoded scRNA-seq (10x Chromium) and spatial transcriptomics (10x Visium); we also provide its optimized module for preprocessing and -mer counting in barcoded data, BKC, as a standalone tool.

View Article and Find Full Text PDF

Introduction: Accurate genotyping of Killer cell Immunoglobulin-like Receptor (KIR) genes plays a pivotal role in enhancing our understanding of innate immune responses, disease correlations, and the advancement of personalized medicine. However, due to the high variability of the KIR region and high level of sequence similarity among different KIR genes, the generic genotyping workflows are unable to accurately infer copy numbers and complete genotypes of individual KIR genes from next-generation sequencing data. Thus, specialized genotyping tools are needed to genotype this complex region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!