Dimension Reduction With Prior Information for Knowledge Discovery.

IEEE Trans Pattern Anal Mach Intell

Published: May 2024

This paper addresses the problem of mapping high-dimensional data to a low-dimensional space, in the presence of other known features. This problem is ubiquitous in science and engineering as there are often controllable/measurable features in most applications. To solve this problem, this paper proposes a broad class of methods, which is referred to as conditional multidimensional scaling (MDS). An algorithm for optimizing the objective function of conditional MDS is also developed. The convergence of this algorithm is proven under mild assumptions. Conditional MDS is illustrated with kinship terms, facial expressions, textile fabrics, car-brand perception, and cylinder machining examples. These examples demonstrate the advantages of conditional MDS over conventional dimension reduction in improving the estimation quality of the reduced-dimension space and simplifying visualization and knowledge discovery tasks. Computer codes for this work are available in the open-source cml R package.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2023.3346212DOI Listing

Publication Analysis

Top Keywords

conditional mds
12
dimension reduction
8
knowledge discovery
8
reduction prior
4
prior knowledge
4
discovery paper
4
paper addresses
4
addresses problem
4
problem mapping
4
mapping high-dimensional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!