Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The pathogenesis of Alzheimer's disease (AD) is extremely intricate, which makes AD patients almost incurable. Recent studies have demonstrated that analyzing multi-modal data can offer a comprehensive perspective on the different stages of AD progression, which is beneficial for early diagnosis of AD. In this paper, we propose a deep self-reconstruction fusion similarity hashing (DS-FSH) method to effectively capture the AD-related biomarkers from the multi-modal data and leverage them to diagnose AD. Given that most existing methods ignore the topological structure of the data, a deep self-reconstruction model based on random walk graph regularization is designed to reconstruct the multi-modal data, thereby learning the nonlinear relationship between samples. Additionally, a fused similarity hash based on anchor graph is proposed to generate discriminative binary hash codes for multi-modal reconstructed data. This allows sample fused similarity to be effectively modeled by a fusion similarity matrix based on anchor graph while modal correlation can be approximated by Hamming distance. Especially, extracted features from the multi-modal data are classified using deep sparse autoencoders classifier. Finally, experiments conduct on the AD Neuroimaging Initiative database show that DS-FSH outperforms comparable methods of AD classification. To conclude, DS-FSH identifies multi-modal features closely associated with AD, which are expected to contribute significantly to understanding of the pathogenesis of AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2024.3383885 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!