As the most common complication of diabetes, diabetic retinopathy (DR) is one of the main causes of irreversible blindness. Automatic DR grading plays a crucial role in early diagnosis and intervention, reducing the risk of vision loss in people with diabetes. In these years, various deep-learning approaches for DR grading have been proposed. Most previous DR grading models are trained using the dataset of single-field fundus images, but the entire retina cannot be fully visualized in a single field of view. There are also problems of scattered location and great differences in the appearance of lesions in fundus images. To address the limitations caused by incomplete fundus features, and the difficulty in obtaining lesion information. This work introduces a novel multi-view DR grading framework, which solves the problem of incomplete fundus features by jointly learning fundus images from multiple fields of view. Furthermore, the proposed model combines multi-view inputs such as fundus images and lesion snapshots. It utilizes heterogeneous convolution blocks (HCB) and scalable self-attention classes (SSAC), which enhance the ability of the model to obtain lesion information. The experimental results show that our proposed method performs better than the benchmark methods on the large-scale dataset.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2024.3384251 | DOI Listing |
Sci Rep
January 2025
School of Computer Science, Hunan First Normal University, Changsha, 410205, China.
Retinal blood vessels are the only blood vessels in the human body that can be observed non-invasively. Changes in vessel morphology are closely associated with hypertension, diabetes, cardiovascular disease and other systemic diseases, and computers can help doctors identify these changes by automatically segmenting blood vessels in fundus images. If we train a highly accurate segmentation model on one dataset (source domain) and apply it to another dataset (target domain) with a different data distribution, the segmentation accuracy will drop sharply, which is called the domain shift problem.
View Article and Find Full Text PDFComput Biol Med
January 2025
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32610, United States; Department of Medicine, University of Florida, Gainesville, FL, 32610, United States; Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, 32610, United States; Intelligent Clinical Care Center, University of Florida, Gainesville, FL, 32610, United States. Electronic address:
Retinal image registration is essential for monitoring eye diseases and planning treatments, yet it remains challenging due to large deformations, minimal overlap, and varying image quality. To address these challenges, we propose RetinaRegNet, a multi-stage image registration model with zero-shot generalizability across multiple retinal imaging modalities. RetinaRegNet begins by extracting image features using a pretrained latent diffusion model.
View Article and Find Full Text PDFMethodsX
June 2025
Department of Computer Science and Engineering, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Tamil Nadu 600062, India.
The disease affects the optic nerve and represents the principle reasons of irreversible vision loss, mostly asymptomatic and uncontrolled. Consequently, early and accurate diagnosis is critical to prevent or reduce its effect, however, conventional diagnostic techniques often fail to provide concrete results. In this regard, we present a new approach built on Generative Adversarial Networks (GAN) and MobileNetV2 pretrained architecture for diagnosing glaucoma.
View Article and Find Full Text PDFOphthalmol Sci
November 2024
Department of Ophthalmology, Sichuan University West China Hospital, Chengdu, Sichuan Province, China.
Objective: To investigate the short-term blood flow changes and image features of the retina and choroid in patients who underwent carotid artery revascularization (CAR) for severe carotid artery stenosis using widefield swept-source OCT angiography (OCTA).
Design: Prospective study.
Participants: This prospective study included 112 eyes (56 eyes on the ipsilateral side and 56 eyes on the contralateral side) of 56 participants with severe carotid artery stenosis.
J Neuroophthalmol
December 2024
Division of Ophthalmology (EB-S, AS, AA-A, AS-B, DW, SS, FC), Department of Surgery, University of Calgary, Calgary, Canada; Department of Biomedical Engineering (CN), University of Calgary, Calgary, Canada; Departments of Neurology (LBDL) and Ophthalmology (LBDL), University of Michigan, Ann Arbor, Michigan; and Department of Clinical Neurosciences (SS, FC), University of Calgary, Calgary, Canada.
Background: Optic neuritis (ON) is a complex clinical syndrome that has diverse etiologies and treatments based on its subtypes. Notably, ON associated with multiple sclerosis (MS ON) has a good prognosis for recovery irrespective of treatment, whereas ON associated with other conditions including neuromyelitis optica spectrum disorders or myelin oligodendrocyte glycoprotein antibody-associated disease is often associated with less favorable outcomes. Delay in treatment of these non-MS ON subtypes can lead to irreversible vision loss.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!