Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In biomedical literature, biological pathways are commonly described through a combination of images and text. These pathways contain valuable information, including genes and their relationships, which provide insight into biological mechanisms and precision medicine. Curating pathway information across the literature enables the integration of this information to build a comprehensive knowledge base. While some studies have extracted pathway information from images and text independently, they often overlook the correspondence between the two modalities. In this paper, we present a pathway figure curation system named pathCLIP for identifying genes and gene relations from pathway figures. Our key innovation is the use of an image-text contrastive learning model to learn coordinated embeddings of image snippets and text descriptions of genes and gene relations, thereby improving curation. Our validation results, using pathway figures from PubMed, showed that our multimodal model outperforms models using only a single modality. Additionally, our system effectively curates genes and gene relations from multiple literature sources. Two case studies on extracting pathway information from literature of non-small cell lung cancer and Alzheimer's disease further demonstrate the usefulness of our curated pathway information in enhancing related pathways in the KEGG database.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363067 | PMC |
http://dx.doi.org/10.1109/JBHI.2024.3383610 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!