The peripheral retinal refractive state plays an important role in eye growth and development and is closely related to the development of myopia. Existing methods for measuring the peripheral retinal refractive state are cumbersome and can only detect in a limited range. To address the above shortcomings, this paper proposes a retinal refractive state detection method using optical refractive compensation imaging. First, a series of defocus images is captured using an optical system, and then the images are enhanced and filtered. Subsequently, the Sobel function is applied to calculate sharpness, and the asymmetric Gaussian (AG) model is employed for peak fitting, allowing for the determination of the fundus retina's overall refractive compensation value. We performed consistency analysis on the central and peripheral diopters with autorefractor KR-8900 (Topcon, Japan) and WAM-5500 (Grand Seiko, Japan), respectively. The intraclass correlation coefficients (ICCs) are all greater than 0.9, showing good consistency. This is a promising alternative to the current techniques for assessing the refraction of the peripheral retina.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.509341DOI Listing

Publication Analysis

Top Keywords

retinal refractive
12
refractive state
12
detection method
8
peripheral retinal
8
refractive compensation
8
refractive
5
diopter detection
4
method based
4
based optical
4
optical imaging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!