A new, to the best of our knowledge, scheme for a wavelength division multiplexing passive optical network (WDM-PON) based on a flat optical frequency comb (OFC) is proposed. Using an OFC as the optical source of the system can realize the colorlessness of optical network units (ONUs), and the direct detection of the downlink data further simplifies the ONU structure. The coherent demodulation of the uplink data improves the system performance due to the coherence of the comb lines. In this research, the proposed system is studied for its performance and power budgeting. The results show the flexibility, effectiveness, and practicability of the proposed scheme, which can be applied to future high-capacity optical access networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.516098 | DOI Listing |
Nat Commun
December 2024
Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
Mid-infrared photoacoustic microscopy can capture biochemical information without staining. However, the long mid-infrared optical wavelengths make the spatial resolution of photoacoustic microscopy significantly poorer than that of conventional confocal fluorescence microscopy. Here, we demonstrate an explainable deep learning-based unsupervised inter-domain transformation of low-resolution unlabeled mid-infrared photoacoustic microscopy images into confocal-like virtually fluorescence-stained high-resolution images.
View Article and Find Full Text PDFSci Rep
December 2024
School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, 214122, China.
The unknown boundary issue, between superior computational capability of deep neural networks (DNNs) and human cognitive ability, has becoming crucial and foundational theoretical problem in AI evolution. Undoubtedly, DNN-empowered AI capability is increasingly surpassing human intelligence in handling general intelligent tasks. However, the absence of DNN's interpretability and recurrent erratic behavior remain incontrovertible facts.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
The hybrid skin-topological effect (HSTE) has recently been proposed as a mechanism where topological edge states collapse into corner states under the influence of the non-Hermitian skin effect (NHSE). However, directly observing this effect is challenging due to the complex frequencies of eigenmodes. In this study, we experimentally observe HSTE corner states using synthetic complex frequency excitations in a transmission line network.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.
Imaging flow cytometry allows image-activated cell sorting (IACS) with enhanced feature dimensions in cellular morphology, structure, and composition. However, existing IACS frameworks suffer from the challenges of 3D information loss and processing latency dilemma in real-time sorting operation. Herein, we establish a neuromorphic-enabled video-activated cell sorter (NEVACS) framework, designed to achieve high-dimensional spatiotemporal characterization content alongside high-throughput sorting of particles in wide field of view.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China.
The solid-state integration of molecular electron spin qubits could promote the advancement of molecular quantum information science. With highly ordered structures and rational designability, microporous framework materials offer ideal matrices to host qubits. They exhibit tunable phonon dispersion relations and spin distributions, enabling optimization of essential qubit properties including the spin-lattice relaxation time (T) and decoherence time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!