The current study was designed to green synthesize silver nanoparticles (GRAgNPs) using Morus alba fruit extract and evaluate their nematicidal effects against strongyle nematodes compared to commercial silver nanoparticles (CAgNPs) in vitro. The nanoparticles were characterized by Ultraviolet-visual absorption spectrography, transmission electron microscopy, and X-ray diffraction. Next, uptake of AgNPs by the first stage larvae (L), egg hatch inhibition (EHI) and the motility of infectious larvae (L3s), and the ultrastructural analysis of the eggs and worms were conducted. Moreover, some of oxidative/nitrosative stress indicators, including total antioxidant status content (TAC), protein carbonylation (PCO), lipid peroxidation (MDA), and DNA damage were assessed in the homogenized samples of strongyle L3s. We found that the GRAgNPs had spherical shape, 20-30 nm in diameter with rough surface. Following incubation with GRAgNPs at concentrations of 43.40, 21.70 and 10.85 ppm and CAgNPs at concentrations of 43.40 and 21.70, EHI was more than 90%. In addition, concentrations of 43.40 and 21.70 ppm of GRAgNPs led to inhibition of larval motility by more than 90%. The LC at 24 h of treatment for GRAgNPs and CAgNPs was determined to be 8.62 and 10.34 ppm, respectively. GRAgNPs and CAgNPs, in a concentration-dependent manner, resulted in the induction of oxidative/nitrosative stress evidenced by decreased TAC levels, and increased levels of MDA and PCO, together with increased DNA damage. The uptake of AgNPs by the L1 larvae revealed that FITC labeled GRAgNPs fluoresced with high intensity largely in the intestinal area. Scanning Electron Microscopy analysis of eggs and larvae revealed that GRAgNPs penetrated the cuticle of larvae, changed the tegmentum, and ultimately killed the worm. In conclusion, GRAgNPs had more robust anthelminthic effects than the standard antiparasitic and CAgNPs. They could be considered as a promising antiparasitic agent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11259-024-10365-5 | DOI Listing |
Sci Rep
December 2024
Department of Engineering, Norfolk State University, Norfolk, USA.
We report a controlled deposition process using atmospheric plasma to fabricate silver nanoparticle (AgNP) structures on polydimethylsiloxane (PDMS) substrates, essential for stretchable electronic circuits in wearable devices. This technique ensures precise printing of conductive structures using nanoparticles as precursors, while the relationship between crystallinity and plasma treatment is established through X-ray diffraction (XRD) analysis. The XRD studies provide insights into the effects of plasma parameters on the structural integrity and adhesion of AgNP patterns, enhancing our understanding of substrate stretchability and bendability.
View Article and Find Full Text PDFJ Tissue Viability
December 2024
Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt; Nile Valley University, Fayoum, 63518 Egypt. Electronic address:
Despite the advances in the development of therapeutic wearable wound-healing patches, lack self-healing properties and strong adhesion to diabetic skin, hindering their effectiveness. We propose a unique, wearable patch made from a 3D organo-hydrogel nanocomposite containing polydopamine, titanium dioxide nanoparticles, and silver quantum dots (PDA-TiO@Ag). The designed patch exhibits ultra-stretchable, exceptional-self-healing, self-adhesive, ensuring conformal contact with the skin even during movement.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
Rhazya stricta, a perennial shrub native to the Middle East and South Asia, has been used in traditional medicine for various therapeutic purposes, including antimicrobial action. The current study aimed to compare the antifungal properties of 96% and 50% ethanolic extracts of R. stricta leaves and their biogenic silver nanoparticles (AgNPs).
View Article and Find Full Text PDFSci Rep
December 2024
Plant Production Department, College of Food and Agriculture Sciences, King Saud University, 11451, Riyadh, Saudi Arabia.
Salinity stress adversely affects wheat growth and productivity, necessitating effective mitigation strategies. This study investigates the combined impact of ascorbic acid (AsA), silver nanoparticles (NPs), and Salvadora oleoides aqueous leaf extract (LE) on wheat tolerance to salinity stress. A randomized complete design (RCD) was employed with fourteen treatments: T1 (5 mM AsA), T2 (10 mM AsA), T3 (20 ppm AgNPs), T4 (40 ppm AgNPs), T5 (5% S.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland.
WO/Ag/TiO composite photoelectrodes were formed via the high-temperature calcination of a WO film, followed by the sputtering of a very thin silver film and deposition of an overlayer of commercial TiO nanoparticles. These synthetic photoanodes were characterized in view of the oxidation of a model organic compound glucose combined with the generation of hydrogen at a platinum cathode. During prolonged photoelectrolysis under simulated solar light, these photoanodes demonstrated high and stable photocurrents of ca.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!