Space as a scaffold for rotational generalisation of abstract concepts.

Elife

Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.

Published: April 2024

Learning invariances allows us to generalise. In the visual modality, invariant representations allow us to recognise objects despite translations or rotations in physical space. However, how we learn the invariances that allow us to generalise abstract patterns of sensory data ('concepts') is a longstanding puzzle. Here, we study how humans generalise relational patterns in stimulation sequences that are defined by either transitions on a nonspatial two-dimensional feature manifold, or by transitions in physical space. We measure rotational generalisation, i.e., the ability to recognise concepts even when their corresponding transition vectors are rotated. We find that humans naturally generalise to rotated exemplars when stimuli are defined in physical space, but not when they are defined as positions on a nonspatial feature manifold. However, if participants are first pre-trained to map auditory or visual features to spatial locations, then rotational generalisation becomes possible even in nonspatial domains. These results imply that space acts as a scaffold for learning more abstract conceptual invariances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10990485PMC
http://dx.doi.org/10.7554/eLife.93636DOI Listing

Publication Analysis

Top Keywords

rotational generalisation
12
physical space
12
feature manifold
8
space
5
space scaffold
4
scaffold rotational
4
generalisation abstract
4
abstract concepts
4
concepts learning
4
learning invariances
4

Similar Publications

Electric quadrupole traps are a leading technology for suspending charged objects ranging in size from single protons to atomic and molecular ions, and even to nano- and micron-sized bodies. If the levitated objects' charge distribution contains multipoles, the time-dependent trapping fields can significantly impact its rotational motion. Here, we experimentally observe the transition from librational motion to a regime where a microparticle rotates in sync with the trap drive.

View Article and Find Full Text PDF

Traveling waves of excitation arise from the spatial coupling of local nonlinear events by transport processes. In corrosion systems, these electro-dissolution waves relay local perturbations across large portions of the metal surface, significantly amplifying overall damage. For the example of the magnesium alloy AZ31B exposed to sodium chloride solution, we report experimental results suggesting the existence of a vulnerable zone in the wake of corrosion waves where local perturbations can induce a unidirectional wave pulse or segment.

View Article and Find Full Text PDF

Ultrasound radiomics predict the success of US-guided percutaneous irrigation for shoulder calcific tendinopathy.

Jpn J Radiol

January 2025

Artificial Intelligence and Translational Imaging (ATI) Lab, Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece.

Objective: Calcific tendinopathy, predominantly affecting rotator cuff tendons, leads to significant pain and tendon degeneration. Although US-guided percutaneous irrigation (US-PICT) is an effective treatment for this condition, prediction of patient' s response and long-term outcomes remains a challenge. This study introduces a novel radiomics-based model to forecast patient outcomes, addressing a gap in the current predictive methodologies.

View Article and Find Full Text PDF

Purpose: To assess the effects of modifying head position and of static ocular counter-rolling (OCR) on abduction and adduction in saccadic eye movements using a head-mounted video-oculographic device.

Study Design: A clinical observational study.

Methods: The peak velocities and amplitude gains of visually guided 12° saccades were binocularly measured in 21 healthy volunteers with their heads in the upright vertical (0°) and horizontal (± 90°, bilateral side-lying) postures, and in 6 participants with their head positions bilaterally tilted by 30°.

View Article and Find Full Text PDF

Stacking-Engineered Ferroelectricity and Multiferroic Order in van der Waals Magnets.

Phys Rev Lett

December 2024

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.

Two-dimensional (2D) materials that exhibit spontaneous magnetization, polarization, or strain (referred to as ferroics) have the potential to revolutionize nanotechnology by enhancing the multifunctionality of nanoscale devices. However, multiferroic order is difficult to achieve, requiring complicated coupling between electron and spin degrees of freedom. We propose a universal method to engineer multiferroics from van der Waals magnets by taking advantage of the fact that changing the stacking between 2D layers can break inversion symmetry, resulting in ferroelectricity as well as magnetoelectric coupling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!