Background: Natural language processing (NLP) tools including recently developed large language models (LLMs) have myriad potential applications in medical care and research, including the efficient labeling and classification of unstructured text such as electronic health record (EHR) notes. This opens the door to large-scale projects that rely on variables that are not typically recorded in a structured form, such as patient signs and symptoms.
Objectives: This study is designed to acquaint the emergency medicine research community with the foundational elements of NLP, highlighting essential terminology, annotation methodologies, and the intricacies involved in training and evaluating NLP models. Symptom characterization is critical to urinary tract infection (UTI) diagnosis, but identification of symptoms from the EHR has historically been challenging, limiting large-scale research, public health surveillance, and EHR-based clinical decision support. We therefore developed and compared two NLP models to identify UTI symptoms from unstructured emergency department (ED) notes.
Methods: The study population consisted of patients aged ≥ 18 who presented to an ED in a northeastern U.S. health system between June 2013 and August 2021 and had a urinalysis performed. We annotated a random subset of 1250 ED clinician notes from these visits for a list of 17 UTI symptoms. We then developed two task-specific LLMs to perform the task of named entity recognition: a convolutional neural network-based model (SpaCy) and a transformer-based model designed to process longer documents (Clinical Longformer). Models were trained on 1000 notes and tested on a holdout set of 250 notes. We compared model performance (precision, recall, F1 measure) at identifying the presence or absence of UTI symptoms at the note level.
Results: A total of 8135 entities were identified in 1250 notes; 83.6% of notes included at least one entity. Overall F1 measure for note-level symptom identification weighted by entity frequency was 0.84 for the SpaCy model and 0.88 for the Longformer model. F1 measure for identifying presence or absence of any UTI symptom in a clinical note was 0.96 (232/250 correctly classified) for the SpaCy model and 0.98 (240/250 correctly classified) for the Longformer model.
Conclusions: The study demonstrated the utility of LLMs and transformer-based models in particular for extracting UTI symptoms from unstructured ED clinical notes; models were highly accurate for detecting the presence or absence of any UTI symptom on the note level, with variable performance for individual symptoms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/acem.14883 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!