HPV-specific antibodies in female genital tract secretions captured via first-void urine retain their neutralizing capacity.

Hum Vaccin Immunother

Centre for the Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.

Published: December 2024

AI Article Synopsis

  • HPV vaccines are effective due to their reliance on neutralizing antibodies, and recent findings suggest HPV-specific antibodies can be found in first-void urine (FVU), presenting a less invasive method for diagnostics.
  • The study examined whether HPV16-specific antibodies in FVU samples maintain neutralizing ability using two types of assays; results indicate these antibodies in FVU are indeed neutralizing, with one assay method proving more sensitive than the other.
  • High correlations between HPV16-neutralizing antibodies in FVU and serum samples were found, suggesting that HPV vaccination could lower transmission risks, which supports further research and development of HPV vaccination programs.

Article Abstract

Human papillomavirus (HPV) vaccines, primarily relying on neutralizing antibodies, have proven highly effective. Recently, HPV-specific antibodies have been detected in the female genital tract secretions captured by first-void urine (FVU), offering a minimally invasive diagnostic approach. In this study, we investigated whether HPV16-specific antibodies present in FVU samples retain their neutralizing capacity by using pseudovirion-based neutralization assays. Paired FVU and serum samples (vaccinated  = 25, unvaccinated  = 25, aged 18-25) were analyzed using two orthogonal pseudovirion-based neutralization assays, one using fluorescence microscopy and the other using luminescence-based spectrophotometry. Results were compared with HPV16-specific IgG concentrations and correlations between neutralizing antibodies in FVU and serum were explored. The study demonstrated the presence of neutralizing antibodies in FVU using both pseudovirion-based neutralization assays, with the luminescence-based assay showing higher sensitivity for FVU samples, while the fluorescence microscopy-based assay exhibited better specificity for serum and overall higher reproducibility. High Spearman correlation values were calculated between HPV16-IgG and HPV16-neutralizing antibodies for both protocols (r: 0.54-0.94,  < .001). Significant Spearman correlations between FVU and serum concentrations were also established for all assays (r: 0.44-0.91,  < .01). This study demonstrates the continued neutralizing ability of antibodies captured with FVU, supporting the hypothesis that HPV vaccination may reduce autoinoculation and transmission risk to the sexual partner. Although further protocol optimizations are warranted, these findings provide a foundation for future research and larger cohort studies that could have implications for the optimal design, evaluation, and implementation of HPV vaccination programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10993920PMC
http://dx.doi.org/10.1080/21645515.2024.2330168DOI Listing

Publication Analysis

Top Keywords

neutralizing antibodies
12
antibodies fvu
12
pseudovirion-based neutralization
12
neutralization assays
12
hpv-specific antibodies
8
female genital
8
genital tract
8
tract secretions
8
secretions captured
8
captured first-void
8

Similar Publications

Introduction: 58 million people worldwide are chronically infected with hepatitis C virus (HCV) and are at risk of developing cirrhosis and hepatocellular carcinoma (HCC). Direct-acting antivirals are highly effective; however, they are burdened by high costs and the unchanged risk of HCC and reinfection, making prophylactic countermeasures an urgent medical need. HCV high genetic diversity is one of the main obstacles to vaccine development.

View Article and Find Full Text PDF

Cytomegalovirus (CMV) is a leading cause of congenital infections and significant health complications in immunocompromised individuals. With no licensed CMV vaccine available, the development of the mRNA-1647 offers promising advancements in CMV prevention. We have reviewed results from Phase 1 and 2 clinical trials of the mRNA-1647 vaccine, demonstrating robust immune responses in both seronegative and seropositive participants.

View Article and Find Full Text PDF

Construction of a Vero cell line expression human KREMEN1 for the development of CVA6 vaccines.

Virol J

January 2025

State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China.

Coxsackievirus A6 (CVA6) has emerged as a major pathogen causing hand, foot and mouth disease (HFMD) outbreaks worldwide. The CVA6 epidemic poses a new challenge in HFMD control since there is currently no vaccine available against CVA6 infections. The Vero cell line has been widely used in vaccine production, particularly in the preparation of viral vaccines, including poliovirus vaccines and EV71 vaccines.

View Article and Find Full Text PDF

The approved intravenous adeno-associated virus (AAV) therapies are limited by the widespread prevalence of pre-existing anti-AAV antibodies in the general population, which are known to restrict patients' ability to receive gene therapy and limit transfection efficacy in vivo. To address this challenge, we have developed a novel recombinant human immunoglobulin G degrading enzyme KJ103, characterized by low immunogenicity and clinical value for the elimination of anti-AAV antibodies in gene transfer. Herein, we conducted two randomized, blinded, placebo-controlled, single ascending dose Phase I studies in China and New Zealand, to evaluate the pharmacokinetics, pharmacodynamics, safety and immunogenicity of KJ103 in healthy volunteers.

View Article and Find Full Text PDF

Neutralizing antibody immune correlates in COVAIL trial recipients of an mRNA second COVID-19 vaccine boost.

Nat Commun

January 2025

Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Neutralizing antibody titer has been a surrogate endpoint for guiding COVID-19 vaccine approval and use, although the pandemic's evolution and the introduction of variant-adapted vaccine boosters raise questions as to this surrogate's contemporary performance. For 985 recipients of an mRNA second bivalent or monovalent booster containing various Spike inserts [Prototype (Ancestral), Beta, Delta, and/or Omicron BA.1 or BA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!