Although copper is an essential element for any organism's well-being, it becomes toxic if present in excess. In the present study, copper was provisioned at 25, 50, and 75 mg/kg in an artificial diet and fed to juvenile larvae of cotton bollworm, Helicoverpa armigera (Lepidoptera; Noctuidae), for 4 generations. The results of this investigation exhibited shortening of larval life in the first 2 generations, but extended duration was observed in third and fourth generations compared to controls, and dietary copper caused reduced total hemocyte counts in all treatments. The number of immunocytes (i.e., granulocytes and plasmatocytes) were also significantly reduced. The changes in activities of certain important enzymes, including catalase, superoxide dismutase, and peroxidases, were seen. Furthermore, after treatment, an increase in the activity of 2 detoxifying enzymes, glutathione s-transferase and acetylcholinesterase, was observed. It is clear that metallothioneins are important in maintaining essential and nonessential metal ion homeostasis. While copper is typically regarded as an important essential metal in an organism's life, excessive amounts can have deteriorating effects. This heavy metal is being used as a nano-based pesticide. Therefore, the present investigation aims to determine the fate of Cu in insects receiving them in new formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ee/nvae030DOI Listing

Publication Analysis

Top Keywords

helicoverpa armigera
8
armigera lepidoptera
8
lepidoptera noctuidae
8
chronic copper
4
copper biology
4
biology immunity
4
immunity biochemical
4
biochemical assessment
4
assessment helicoverpa
4
noctuidae laboratory
4

Similar Publications

A series of novel triazone derivatives containing aldehyde hydrazone or ketone hydrazone moieties were designed, synthesized and their biological activities were investigated against , , , , and 14 Kinds of fungi. Most of the aldehyde hydrazone exhibited excellent insecticidal activities against . In particular, the aphicidal activities of compounds (35%) and (30%) were equivalent to pymetrozine (30%) at 5 mg/kg.

View Article and Find Full Text PDF

Wings are important organs of insects involved in flight, mating, and other behaviors, and are therefore prime targets for pest control. The formation of insect wings is a complex process that is regulated by multiple pathways. The Hedgehog (Hh) pathway regulates the distribution of wing veins, while the Hippo pathway modulates wing size.

View Article and Find Full Text PDF

The steroid hormone 20-hydroxyecdysone induces lipophagy via the brain-adipose tissue axis by promoting the adipokinetic hormone pathway.

J Biol Chem

January 2025

Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, China. Electronic address:

Lipophagy is a way to degrade lipids; however, the molecular mechanisms are not fully understood. Using the holometabolous lepidopteran insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the larval fat body undergoes lipophagy during metamorphosis, and lipophagy is essential for metamorphosis. The steroid hormone 20-hydroxyecdysone (20E) induced lipophagy by promoting the expression of the peptide hormone adipokinetic hormone (AKH, the insect analog of glucagon) and the adipokinetic hormone receptor (AKHR).

View Article and Find Full Text PDF

Background: Baculoviruses are ideal biological insecticides, providing long-lasting pest control and environmental benefits. Alphabaculovirus mabrassicae stains, with their broad host range, have been effective in agricultural pest management. Various A.

View Article and Find Full Text PDF

The phytohormone jasmonates (JAs) regulate plant growth and defense responses. The reproductive organs of flowers are devastated by insect herbivores. However, the molecular mechanisms of floral defense remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!