The migration of atoms and small clusters is an important process in sub-nanometre scale heterogeneous catalysis, affecting activity, accessibility and deactivation through sintering. Control of migration can be partially achieved encapsulation of sub-nanometre metal particles into porous media such as zeolites. However, a general understanding of the migration mechanisms and their sensitivity to particle size and framework environment is lacking. Here, we extend the time-scale and sampling of atomistic simulations of platinum cluster diffusion in siliceous zeolite frameworks, by introducing a reactive neural network potential of density functional quality. We observe that Pt atoms migrate in a qualitatively different manner from clusters, occupying the dense region of the framework and avoiding the free pore space. We also find that for cage-like zeolite CHA there exists a maximum in self diffusivity for the Pt dimer beyond which, confinement effects hinder intercage migration. By extending the quality of sampling, NNP-based methods allow for the discovery of novel dynamical processes at the atomistic scale, bringing modelling closer to experimental characterization of catalytic materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr00017j | DOI Listing |
Unlabelled: The basal ganglia play a crucial role in action selection by facilitating desired movements and suppressing unwanted ones. The substantia nigra pars reticulata (SNr), a key output nucleus, facilitates movement through disinhibition of the superior colliculus (SC). However, its role in action suppression, particularly in primates, remains less clear.
View Article and Find Full Text PDFAdversity in childhood is robustly associated with persistent pain in adulthood. Neuro-immune interactions are a candidate mechanistic link between childhood adversity and persistent pain, given that both childhood adversity and persistent pain are associated with neural and immune upregulation in adulthood. As such, we aimed to clarify whether immune reactivity is associated with provoked differences in nociceptive processing in humans.
View Article and Find Full Text PDFPersonal Ment Health
February 2025
University of Houston, Houston, Texas, USA.
More work is needed to establish the validity of the Alternative Model of Personality Disorders (AMPD) in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Acceptance of the AMPD as the primary model of personality disorder requires identifying neurocognitive validators of AMPD-defined personality functioning and demonstrating superiority of the AMPD over the traditional categorical model of personality disorder. It is also important to establish the utility of the AMPD in a developmental context given evidence that personality disorder emerges in adolescence.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Institute of Urology, Beijing Municipal Health Commission, Beijing 100050, China. Electronic address:
We previously established an effective method to ameliorate erectile dysfunction (ED) using intracavernous injection (ICI) of mesenchymal stem cell (MSC) microspheres. However, the expression of a key neurotrophic factor, brain-derived neurotrophic factor (BDNF), was low in both MSCs and MSC microspheres, restricting the associated neural repair. Based on the hypoxia and oxidative stress microenvironments within cell spheroids and lesion areas, BDNF-expressing nanocomplexes that are dual-responsive to hypoxia and reactive oxygen species were designed to modify MSCs, achieving high BDNF expression in MSC spheroids.
View Article and Find Full Text PDFNutr Neurosci
January 2025
Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India.
Purpose: The incidence of obesity has surged to pandemic levels in recent decades. Approximately 1.89 million obesity are linked to excessive salt consumption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!