Whole-transcriptome profiling and identification of cold tolerance-related ceRNA networks in rice varieties.

Front Plant Sci

Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China.

Published: March 2024

Introduction: Low-temperature stress negatively impacts rice yield, posing a significant risk to food security. While previous studies have explored the physiological and linear gene expression alterations in rice under low-temperature conditions, the changes in competing endogenous RNA (ceRNA) networks remain largely unexamined.

Methods: We conducted RNA sequencing on two rice varieties with differing cold-tolerance capabilities to establish ceRNA networks. This enabled us to investigate the transcriptional regulatory network and molecular mechanisms that rice employs in response to low-temperature stress.

Results: We identified 364 differentially expressed circular RNAs (circRNAs), 224 differentially expressed microRNAs (miRNAs), and 12,183 differentially expressed messenger RNAs (mRNAs). family was the most prominent transcription factor family involved in cold tolerance. Based on the expression patterns and targeted relationships of these differentially expressed RNAs, we discerned five potential ceRNA networks related to low-temperature stress in rice: osa-miR166j-5p from the miR166 family was associated with cold tolerance; osa-miR528-3p and osa-miR156j-3p were linked to stress response; and osa-miR156j-3p was involved in the antioxidant system. In addition, in the antioxidant system, as well as and , correlated with the corresponding stress response and circRNAs in the network. A gene sequence difference analysis and phenotypic validation of () within the family suggested its potential role in regulating cold tolerance in rice.

Discussion And Conclusion: We identified () as a promising candidate gene for enhancing cold tolerance in rice. The candidate miRNAs, mRNAs, and circRNAs uncovered in this study are valuable targets for researchers and breeders. Our findings will facilitate the development of cold-tolerant rice varieties from multiple angles and provide critical directions for future research into the functions of cold-tolerance-related miRNAs, mRNAs, and circRNAs in rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10985246PMC
http://dx.doi.org/10.3389/fpls.2024.1260591DOI Listing

Publication Analysis

Top Keywords

cerna networks
16
differentially expressed
16
cold tolerance
16
rice varieties
12
rice
9
low-temperature stress
8
stress response
8
antioxidant system
8
mirnas mrnas
8
mrnas circrnas
8

Similar Publications

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

Introduction: Resistance to lenvatinib limits the effectiveness of the targeted treatments for HCC. However, the exact mechanism behind this resistance remains elusive. Current research suggests that circular RNA (circRNA) is pivotal in mediating drug resistance during targeted treatments.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is an autoimmune inflammatory disorder that causes neurological disability. Dysregulated lipid metabolism contributes to the pathogenesis of MS. This study aimed to identify lipid metabolism-related gene markers and construct a diagnostic model for MS.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is a significant global health concern, with chronic hepatitis B virus (HBV) infection being a major contributor. Understanding the mechanisms of HBV-associated HCC is crucial to improving the prognosis and developing effective treatments.

Methods: HBV-associated HCC datasets (GSE19665, GSE121248, GSE55092, GSE94660, and TCGA-LIHC) acquired from public databases were mined to identify key driver genes by differentially expressed gene analysis, weighted gene co-expression network analysis (WGCNA), followed by protein-protein interaction network analysis, Lasso-Cox regression analysis, and randomforestSRC algorithm.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are among the most abundant types of non-coding RNAs in the genome and exhibit particularly high expression levels in the brain, where they play crucial roles in various neurophysiological and neuropathological processes. Although ischemic stroke is a complex multifactorial disease, the involvement of brain-derived lncRNAs in its intricate regulatory networks remains inadequately understood. In this study, we established a cerebral ischemia-reperfusion injury model using middle cerebral artery occlusion (MCAO) in male Sprague-Dawley rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!