The cartilage tissue lacks blood vessels, which is composed of chondrocytes and ECM. Due to this vessel-less structure, it is difficult to repair cartilage tissue damages. One of the new methods to repair cartilage damage is to use tissue engineering. In the present study, it was attempted to simulate a three-dimensional environment similar to the natural ECM of cartilage tissue by using hydrogels made of natural materials, including Chitosan and different ratios of Alginate. Chitosan, alginate and Chitosan/Alginate hydrogels were fabricated. Fourier Transform Infrared, XRD, swelling ratio, porosity measurement and degradation tests were applied to scaffolds characterization. After that, human adipose derived-mesenchymal stem cells (hADMSCs) were cultured on the hydrogels and then their viability and chondrogenic differentiation capacity were studied. Safranin O and Alcian blue staining, immunofluorescence staining and real time RT-PCR were used as analytical methods for chondrogenic differentiation potential evaluation of hADMSCs when cultured on the hydrogels. The highest degradation rate was detected in Chitosan/Alginate (1:0.5) group The scaffold biocompatibility results revealed that the viability of the cells cultured on the hydrogels groups was not significantly different with the cells cultured in the control group. Safranin O staining, Alcian blue staining, immunofluorescence staining and real time PCR results revealed that the chondrogenic differentiation potential of the hADMSCs when grown on the Chitosan/Alginate hydrogel (1:0.5) was significantly higher than those cell grown on the other groups. Taken together, these results suggest that Chitosan/Alginate hydrogel (1:0.5) could be a promising candidate for cartilage tissue engineering applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10985146 | PMC |
http://dx.doi.org/10.3389/fbioe.2024.1363241 | DOI Listing |
Curr Stem Cell Res Ther
January 2025
Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
Introduction: Osteoarthritis (OA) is a degenerative joint disease that can affect the many tissues of the joint. There are no officially recognized disease-modifying therapies for clinical use at this time probably due to a lack of complete comprehension of the pathogenesis of the disease. In recent years, emerging regenerative therapy and treatments with stem cells both undifferentiated and differentiated cells have gained much attention as they can efficiently promote tissue repair and regeneration.
View Article and Find Full Text PDFZhonghua Kou Qiang Yi Xue Za Zhi
January 2025
Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology & School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology & Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
To investigate the effects of artificial light at night on the growth of mandibles in mice and its regulatory mechanisms. A mouse model of artificial light at night (night light pollution group) and normal lighting (normal light group) was established by controlling light exposure time, with 4 mice in each group. Micro-CT was employed to analyze the differences in bone quantities of the mandibles between the two groups.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, China.
Objective: To explore the mechanism of hyperbaric oxygen therapy in inhibiting subchondral bone angiogenesis and delaying the progression of osteoarthritis through the PHD2/HIF-1α signaling pathway.
Methods: Mice were randomly divided into three groups (control group, osteoarthritis group, and hyperbaric oxygen treatment group). The effect of hyperbaric oxygen therapy on osteoarthritis was evaluated using Micro-CT, Safranin O-Fast Green staining, and detection of osteoarthritis inflammation markers (MMP-13, ADAMTS-5, Col2a1, and Aggrecan).
Osteoarthr Cartil Open
March 2025
Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
Objective: Osteoarthritis, a degenerative joint disease, requires innovative therapies due to the limited ability of cartilage to regenerate. Since mesenchymal stem cells (MSCs) provide a cell source for chondrogenic cells, we hypothesize that chemicals capable of enhancing the chondrogenic potential of MSCs with transforming growth factor-beta (TGFβ) in vitro may similarly promote chondrogenesis in articular cartilage in vivo.
Design: Chemical compounds that enhance the TGFβ signaling for chondrogenesis were investigated utilizing mesenchymal stem cells derived from human induced pluripotent stem cells.
NPJ Regen Med
January 2025
Department of Orthopedic Surgery, Columbia University, New York, NY, USA.
A high prevalence of rotator cuff tears presents a major clinical challenge. A better understanding of the molecular mechanisms underlying enthesis development and healing is needed for developing treatments. We recently identified hedgehog (Hh)-lineage cells critical for enthesis development and repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!