Background: Coronary heart disease (CHD) is the leading cause of death and disability worldwide. Accumulating evidence reveals that atherosclerosis (AS), characterized by systemic, chronic, and multifocal disease, and is the primary pathological basis of cardiovascular diseases, including CHD. However, the molecular underpinnings of CHD are still far from well understood. Our study attempted to identify aberrant plasma exosome-derived circRNAs and key exosomal circRNA biomarkers for CHD.
Methods: The expression profiles of mRNAs, circRNAs, and lncRNAs in the blood exosomes of CHD patients and healthy controls were obtained from the exoRBase database. The corresponding miRNAs of the differentially expressed mRNAs, circRNAs, and lncRNAs were predicted via ENCORI and the miRcode database. LncRNAs/circRNAs and mRNAs with the cotargeted miRNAs were selected to construct an interaction network. Multiple machine learning algorithms have been used to explore potential biomarkers, followed by verification in patients with CHD using real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR).
Results: Based on the cutoff criterion of < 0.05, we identified 85 differentially expressed circRNAs (4 upregulated and 81 downregulated), 43 differentially expressed lncRNAs (24 upregulated and 19 downregulated), and 312 differentially expressed mRNAs (55 upregulated and 257 downregulated). Functional enrichment analysis revealed that the differentially expressed mRNAs were involved mainly in neutrophil extracellular trap (NET) formation and the nucleotide-binding oligomerization domain- (NOD-) like receptor signaling pathway. Further analysis revealed that the DEGs in the circRNA/lncRNA-miRNA-mRNA interaction network were closely related to lipid and atherosclerotic signaling pathways. Hsa_circ_0001360 and hsa_circ_0000038 were identified as potential biomarkers for CHD based on three machine learning algorithms. The relative expression levels of hsa_circ_0001360 and hsa_circ_0000038 were significantly altered in plasma exosomes from patients with CHD. ROC curve analysis revealed that the areas under the curve (AUCs) were 0.860, 0.870, and 0.940 for hsa_circ_0001360, hsa_circ_0000038, and the two-gene combination, respectively.
Conclusion: The circRNA/lncRNA-miRNA-mRNA interaction network might help to elucidate the pathogenesis of CHD. Hsa_circ_0001360 combined with hsa_circ_0000038 might be an important diagnostic biomarker.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987246 | PMC |
http://dx.doi.org/10.1155/2024/5557143 | DOI Listing |
PLoS One
March 2025
Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, Shanxi, China.
Objective: This study aims to investigate and analyze the differentially expressed genes (DEGs) in CD34 + hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) through bioinformatics analysis, with the ultimate goal of uncovering the potential molecular mechanisms underlying pathogenesis of MDS. The findings of this study are expected to provide novel insights into clinical treatment strategies for MDS.
Methods: Initially, we downloaded three datasets, GSE81173, GSE4619, and GSE58831, from the public Gene Expression Omnibus (GEO) database as our training sets, and selected the GSE19429 dataset as the validation set.
Clin Exp Rheumatol
March 2025
Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Objectives: The genetic underpinnings of RA remain partially elucidated, motivating our exploration of copy number variations (CNV) and rare variations in the pathogenesis of RA.
Methods: We conducted an integrated analysis of the genome-wide landscape of CNV and exome-wide rare variation associations with RA in the UK Biobank. To strengthen our findings, we corroborated the results by the differentially expressed genes identified from gene expression profiles of synovial tissue of RA patients and health controls.
Geroscience
March 2025
Department of Medicine, College of Human Medicine, Michigan State University, 1355 Bogue St, East Lansing, MI, 48824, USA.
Transient receptor potential ankyrin 1 (TRPA1) is a sensory channel expressed in vagal afferent nerves that detect noxious stimuli. Trpa1 knockout accelerates age-related cardiac fibrosis and dysfunction in mice. This study investigated whether TRPA1 activation with its selective agonist, allyl isothiocyanate (AITC), prevents cardiac aging.
View Article and Find Full Text PDFDiscov Oncol
March 2025
Department of Hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China.
Clinical management of acute myeloid leukemia (AML) poses significant challenges due to its poor prognosis and heterogeneous nature. Discovering new biomarkers is crucial for improving risk assessment and customizing treatment approaches. While leukocyte-specific transcript 1 (LST1) is implicated in inflammation and immune regulation, its function in AML remains ambiguous.
View Article and Find Full Text PDFMycorrhiza
March 2025
INRAE, Institut Agro Dijon, Université de Bourgogne, Agroécologie, Dijon, France.
Plant-microorganism interactions underlie many ecosystem roles, in particular the enhancement of plant nutrition through mutualistic relationships, such as the arbuscular mycorrhizal symbiosis that affects a large proportion of land plants. The establishment of this interaction induces a wide range of signaling pathways in which lipids, and particularly sterols, may play a central role. However, their supported functions are poorly known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!