β-Hydroxy-α-amino acids (β-HAAs) have extensive applications in the pharmaceutical, chemical synthesis, and food industries. The development of synthetic methodologies aimed at producing optically pure β-HAAs has been driven by practical applications. Among the various synthetic methods, biocatalytic asymmetric synthesis is considered a sustainable approach due to its capacity to generate two stereogenic centers from simple prochiral precursors in a single step. Therefore, extensive efforts have been made in recent years to search for effective enzymes which enable such biotransformation. This review provides an overview on the discovery and engineering of C-C bond formation enzymes for the biocatalytic synthesis of β-HAAs. We highlight examples where the use of threonine aldolases, threonine transaldolases, serine hydroxymethyltransferases, α-methylserine aldolases, α-methylserine hydroxymethyltransferases, and engineered alanine racemases facilitated the synthesis of β-HAAs. Additionally, we discuss the potential future advancements and persistent obstacles in the enzymatic synthesis of β-HAAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07388551.2024.2332295 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!