Association between environmental gradient of anthropization and phenotypic plasticity in two species of triatomines.

Parasit Vectors

Cátedra de Morfología Animal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.

Published: April 2024

Background: Triatoma garciabesi and T. guasayana are considered secondary vectors of Trypanosoma cruzi and frequently invade rural houses in central Argentina. Wing and head structures determine the ability of triatomines to disperse. Environmental changes exert selective pressures on populations of both species, promoting changes in these structures that could have consequences for flight dispersal. The aim of this study was to investigate the relationship between a gradient of anthropization and phenotypic plasticity in flight-related traits.

Methods: The research was carried out in Cruz del Eje and Ischilín departments (Córdoba, Argentina) and included 423 individuals of the two species of triatomines. To measure the degree of anthropization, a thematic map was constructed using supervised classification, from which seven landscapes were selected, and nine landscape metrics were extracted and used in a hierarchical analysis. To determine the flight capacity and the invasion of dwellings at different levels of anthropization for both species, entomological indices were calculated. Digital images of the body, head and wings were used to measure linear and geometric morphometric variables related to flight dispersion. One-way ANOVA and canonical variate analysis (CVA) were used to analyze differences in size and shape between levels of anthropization. Procrustes variance of shape was calculated to analyze differences in phenotypic variation in heads and wings.

Results: Hierarchical analysis was used to classify the landscapes into three levels of anthropization: high, intermediate and low. The dispersal index for both species yielded similar results across the anthropization gradient. However, in less anthropized landscapes, the density index was higher for T. garciabesi. Additionally, in highly anthropized landscapes, females and males of both species exhibited reduced numbers. Regarding phenotypic changes, the size of body, head and wings of T. garciabesi captured in the most anthropized landscapes was greater than for those captured in less anthropized landscapes. No differences in body size were observed in T. guasayana collected in the different landscapes. However, males from highly anthropized landscapes had smaller heads and wings than those captured in less anthropized landscapes. Both wing and head shapes varied between less and more anthropogenic environments in both species.

Conclusions: Results of the study indicate that the flight-dispersal characteristics of T. garciabesi and T. guasayana changed in response to varying degrees of anthropization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10986143PMC
http://dx.doi.org/10.1186/s13071-024-06258-wDOI Listing

Publication Analysis

Top Keywords

anthropized landscapes
24
levels anthropization
12
captured anthropized
12
landscapes
9
anthropization
8
gradient anthropization
8
anthropization phenotypic
8
phenotypic plasticity
8
species triatomines
8
garciabesi guasayana
8

Similar Publications

Chikungunya virus (CHIKV) is primarily associated with non-human-primates (NHPs) in Africa, which also infect humans. Since its introduction to Brazil in 2014, CHIKV has predominantly thrived in urban cycles, involving Aedes aegypti mosquitoes. Limited knowledge exists regarding CHIKV occurrence and implications in rural and sylvatic cycles where neotropical NHPs are potential hosts, from which we highlight Leontopithecus chrysomelas (Kuhl, 1820), the golden-headed lion tamarin (GHLT), an endangered species endemic to the Atlantic Forest (AF) in Southern Bahia State, Brazil.

View Article and Find Full Text PDF

Migratory birds benefit from urban environments in a highly anthropized Neotropical region.

PLoS One

January 2025

Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México.

Land use change from wildlands to urban and productive environments can dramatically transform ecosystem structure and processes. Despite their structural and functional differences from wildlands, human-modified environments offer unique habitat elements for wildlife. In this study, we examined how migratory birds use urban, productive, and wildland environments of a highly anthropized region of Western Mexico known as "El Bajío".

View Article and Find Full Text PDF

Three-quarters of the planet's land surface has been altered by humans, with consequences for animal ecology, movements and related ecosystem functioning. Species often occupy wide geographical ranges with contrasting human disturbance and environmental conditions, yet, limited data availability across species' ranges has constrained our understanding of how human pressure and resource availability jointly shape intraspecific variation of animal space use. Leveraging a unique dataset of 758 annual GPS movement trajectories from 375 brown bears (Ursus arctos) across the species' range in Europe, we investigated the effects of human pressure (i.

View Article and Find Full Text PDF

Beta diversity of macrophyte life forms: Responses to local, spatial, and land use variables in Amazon aquatic environments.

Sci Total Environ

January 2025

Laboratório de Ecologia de Produtores Primários (ECOPRO), Instituto de Ciências Biológicas, Universidade Federal do Pará, R. Augusto Corrêa, 01, 66075-110, Belém, Pará, Brazil.

Aquatic macrophytes encompass a highly diverse group of plants with different strategies, niche requirements, and dispersion capacities. Therefore, macrophyte life forms can respond distinctly to environmental factors. We analyzed whether emergent/amphibious, floating-leaves/rooted submerged, and free-floating/free-submerged macrophytes respond differently to local, spatial, and land use variables in ponds and streams of the Amazon.

View Article and Find Full Text PDF

Urbanization-driven environmental shifts cause reduction in aminopeptidase N activity in the honeybee.

Conserv Physiol

December 2024

Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, 20133, Milan, Italy.

Honeybees ( Linnaeus, 1758) are managed pollinators in anthropized landscapes but suffer adverse physiological effects from urbanization due to increased pollution, higher temperatures and a loss of habitat quality. Previous studies in various animal taxa have shown how responses of digestive enzymes, such as Aminopeptidase N (APN), can indicate stress conditions and thus be used to measure the harmfulness of anthropogenic disturbance. However, no studies have focused on bees.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!