Pleiotropy (whereby one genetic polymorphism affects multiple traits) and epistasis (whereby non-linear interactions between genetic polymorphisms affect the same trait) are fundamental aspects of the genetic architecture of quantitative traits. Recent advances in the ability to characterize the effects of polymorphic variants on molecular and organismal phenotypes in human and model organism populations have revealed the prevalence of pleiotropy and unexpected shared molecular genetic bases among quantitative traits, including diseases. By contrast, epistasis is common between polymorphic loci associated with quantitative traits in model organisms, such that alleles at one locus have different effects in different genetic backgrounds, but is rarely observed for human quantitative traits and common diseases. Here, we review the concepts and recent inferences about pleiotropy and epistasis, and discuss factors that contribute to similarities and differences between the genetic architecture of quantitative traits in model organisms and humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330371 | PMC |
http://dx.doi.org/10.1038/s41576-024-00711-3 | DOI Listing |
Biol Direct
December 2024
Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
Background: Integrating multi-layered information can enhance the accuracy of genomic prediction for complex traits. However, the improvement and application of effective strategies for genomic prediction (GP) using multi-omics data remains challenging.
Methods: We generated 11 feature sets for sequencing variants from genomics, transcriptomics, metabolomics, and epigenetics data in beef cattle, then we assessed the contribution of functional variants using genomic restricted maximum likelihood (GREML).
J Sci Food Agric
December 2024
Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
Background: Relatively few studies have explored the impact of biofertilizers on the qualitative and quantitative yield of saffron despite its global agricultural and medical importance. This study aimed to evaluate the physiological and phytochemical responses of saffron to potassium (K), phosphorus (P), and iron-zinc (Fe-Zn) biofertilizers over 2 consecutive years (2022-2023). The treatments included single and combined applications of K, P, and Fe-Zn biofertilizers containing active bacterial inoculum, along with a control group, resulting in a total of eight treatments.
View Article and Find Full Text PDFPLoS One
December 2024
Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou Province, China.
Objective: To verify the accuracy of collagen-specific SNP mutation loci of Kele pigs selected by whole genome resequencing, and to excavate collagen-related genes of Kele pigs, so as to lay a foundation for further molecular selection.
Methods: Based on whole genome resequencing, candidate genes related to collagen trait of Kele pig were screened for gene annotation. Through KEGG and GO enrichment analysis of differential genes, we selected four genes that may affect collagen trait of collagen pig, namely COL9A1, COL6A5, COL4A3 and COL4A4.
Sci Rep
December 2024
Instittue of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
Lentils are a vital staple crop in a world seeking sustainable and secure food, but their cultivation face a threat due to yield instability, mainly arising from a lack of genetic diversity in breeding programmes. In this study, we assembled and characterized the genetic and phenotypic diversities of a collection of 106 lentil genotypes, to evaluate their breeding and cropping potential. Lentil landraces from Italy and beyond, either abandoned or still cultivated, were collected from genebanks, seed savers, universities and farmers.
View Article and Find Full Text PDFSci Rep
December 2024
College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China.
Brace roots are the primary organs for water and nutrient absorption, and play an important role in lodging resistance. Dissecting the genetic basis of brace root traits will facilitate breeding new varieties with lodging resistance and high yield. In present study, genome-wide association study (GWAS) and genomic selection (GS) for brace root penetrometer resistance (PR), root number (RN), and tier number (TN) were conducted in a multi-parent doubled haploid (DH) population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!