High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987645PMC
http://dx.doi.org/10.1038/s41598-024-54655-zDOI Listing

Publication Analysis

Top Keywords

high throughput
8
throughput screening
8
chemical space
8
viable alternative
4
alternative high
4
screening 318-target
4
318-target study
4
study high
4
screening hts
4
hts routinely
4

Similar Publications

Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD.

View Article and Find Full Text PDF

Risk of residual/recurrent cervical diseases in HPV-positive women post-conization depends on HPV integration status.

Infect Agent Cancer

January 2025

College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China.

Background: It is crucial to identify post-operative patients with HPV infection who are at high risk for residual/recurrent disease. This study aimed to evaluate the association between HPV integration and clinical outcomes in HPV-positive women after cervical conization, as well as to identify HPV integration breakpoints.

Methods: This retrospective study analyzed data of 791 women who underwent cervical conization for cervical intraepithelial neoplasia grades 2-3 (CIN2-3) between September 2019 and September 2023, sourced from the Fujian and Hubei cervical lesion screening cohorts.

View Article and Find Full Text PDF

Background: High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise.

View Article and Find Full Text PDF

Infectious diseases pose significant challenges to Norwegian Atlantic salmon aquaculture. Vaccines are critical for disease prevention; however, a deeper understanding of the immune system is essential to improve vaccine efficacy. Immunoglobulin M (IgM) is the main antibody involved in the systemic immune response of teleosts, including Atlantic salmon.

View Article and Find Full Text PDF

This study aimed to evaluate the usefulness of amplicon-based real-time metagenomic sequencing applied to cerebrospinal fluid (CSF) for identifying the causative agents of bacterial meningitis. We conducted a 16S rRNA amplicon sequencing using a nanopore-based platform, alongside routine polymerase chain reaction (PCR) testing or bacterial culture, to compare its clinical performance in pathogen detection on CSF samples. Among 17 patients, nanopore-based sequencing, multiplex PCR, and bacterial culture detected potential bacterial pathogens in 47.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!