Hydrochemical characterization and assessment of health risks of trace elements in the Huai River Basin of China.

Environ Sci Pollut Res Int

State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi'an, 710061, China.

Published: April 2024

Basin water pollution is a global problem, especially in the densely populated areas. The Huai River Basin (abbreviated as HRB), including the Huai River system and the Yishu River system, is the sixth-largest and most densely populated watershed in China. However, there is a lack of comprehensive studies of river and well water throughout the Huai River basin, including hydrochemistry characterization and assessment of health risks. This study investigated water quality and pollution sources of river and well water in the HRB based on the hydrochemistry analysis and different water quality indices. The water body in the HRB showed weak alkalinity (pH = 8.4 ± 0.7) and had high TDS values (TDS = 339 ± 186 mg/L) with water types of HCO-Ca-Mg and SO-Cl-Ca-Mg in the Huai River system, and SO-Cl-Ca-Mg in the Yishu River system. Atmospheric input and evaporation had less impact on hydrochemistry. Evaporite dissolution and carbonate weathering had a greater impact on hydrochemistry. Carbonate precipitation and cation exchange also influenced the dissolved solutes, especially Ca and Na. Samples had low to medium salinity hazards and sodium absorption ratios and were suitable for irrigation. For drinking purposes, samples were fresh water and have good or excellent according to the Water Quality Index (WQI). Land use types influenced water quality with the worst river water quality from cropland. Combining different assessment indices, the water quality of the Yishu River system performed better than the Huai River system. Absolute principal component analysis-multiple linear regression and the positive matrix factorization models identified the main pollutants as As, Ba, Cr, Ni, and Mn, with natural sources of As, Ba, and Ni and anthropogenic inputs of Cr, and Mn. Although the water quality of the HRB has improved in recent years, high potential risk from As, Cr, Mn, Ba, and Ni should be noted. This study provided vital information for basin hydrochemistry analysis and water quality assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-33000-xDOI Listing

Publication Analysis

Top Keywords

water quality
32
huai river
24
river system
24
water
14
river
12
river basin
12
yishu river
12
characterization assessment
8
assessment health
8
health risks
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!