Motivation: Automated chromatin segmentation based on ChIP-seq (chromatin immunoprecipitation followed by sequencing) data reveals insights into the epigenetic regulation of chromatin accessibility. Existing segmentation methods are constrained by simplifying modeling assumptions, which may have a negative impact on the segmentation quality.

Results: We introduce EpiSegMix, a novel segmentation method based on a hidden Markov model with flexible read count distribution types and state duration modeling, allowing for a more flexible modeling of both histone signals and segment lengths. In a comparison with existing tools, ChromHMM, Segway, and EpiCSeg, we show that EpiSegMix is more predictive of cell biology, such as gene expression. Its flexible framework enables it to fit an accurate probabilistic model, which has the potential to increase the biological interpretability of chromatin states.

Availability And Implementation: Source code: https://gitlab.com/rahmannlab/episegmix.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11026141PMC
http://dx.doi.org/10.1093/bioinformatics/btae178DOI Listing

Publication Analysis

Top Keywords

hidden markov
8
markov model
8
duration modeling
8
chromatin
5
episegmix flexible
4
flexible distribution
4
distribution hidden
4
model duration
4
modeling
4
modeling chromatin
4

Similar Publications

This study presents the first movement analysis of snow leopards () using satellite telemetry data, focusing on the northeastern Himalayas of Nepal. By examining GPS-based satellite collar data between 2013 and 2017 from five collared snow leopards (effectively three individuals), the research uncovered distinct movement patterns, activity budgeting and home range utilisation from one adult male and two sub adult females. Hidden Markov models (HMMs) revealed three behavioural states based on the movement patterns-slow (indicative of resting), moderate and fast (associated with travelling) and demonstrated that the time of day influenced their behavioural state.

View Article and Find Full Text PDF

Fatigue can cause human error, which is the main cause of accidents. In this study, the dynamic fatigue recognition of unmanned electric locomotive operators under high-altitude, cold and low oxygen conditions was studied by combining physiological signals and multi-index information. The characteristic data from the physiological signals (ECG, EMG and EM) of 15 driverless electric locomotive operators were tracked and tested continuously in the field for 2 h, and a dynamic fatigue state evaluation model based on a first-order hidden Markov (HMM) dynamic Bayesian network was established.

View Article and Find Full Text PDF

The gene family plays a crucial role in plant growth, development, and responses to biotic and abiotic stresses. , a warm-season turfgrass with exceptional salt tolerance, can be irrigated with seawater. However, the gene family in seashore paspalum remains poorly understood.

View Article and Find Full Text PDF

Paratuberculosis (Johne's disease), caused by Mycobacterium avium subsp. paratuberculosis (MAP), is a common, economically-important and potentially zoonotic contagious disease of cattle, with worldwide distribution. Disease management relies on identification of animals which are at high-risk of being infected or infectious.

View Article and Find Full Text PDF

The biomedical applications of artificial intelligence: an overview of decades of research.

J Drug Target

January 2025

Department of Pharmaceutics, Bharat Pharmaceutical Technology, Amtali, Agartala, Tripura, India.

A significant area of computer science called artificial intelligence (AI) is successfully applied to the analysis of intricate biological data and the extraction of substantial associations from datasets for a variety of biomedical uses. AI has attracted significant interest in biomedical research due to its features: (i) better patient care through early diagnosis and detection; (ii) enhanced workflow; (iii) lowering medical errors; (v) lowering medical costs; (vi) reducing morbidity and mortality; (vii) enhancing performance; (viii) enhancing precision; and (ix) time efficiency. Quantitative metrics are crucial for evaluating AI implementations, providing insights, enabling informed decisions, and measuring the impact of AI-driven initiatives, thereby enhancing transparency, accountability, and overall impact.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!