Light-Gating Crystalline Porous Covalent Organic Frameworks.

J Am Chem Soc

Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.

Published: April 2024

We report light gating in synthetic one-dimensional nanochannels of stable crystalline porous covalent organic frameworks. The frameworks consist of 2D hexagonal skeletons that are extended over the - plane and stacked along the -direction to create dense yet aligned 1D mesoporous channels. The pores are designed to be photoadaptable by covalently integrating tetrafluoro-substituted azobenzene units onto edges, which protrude from walls and offer light-gating machinery confined in the channels. The implanted tetrafluoroazobenzene units are thermally stable yet highly sensitive to visible light to induce photoisomerization between the and forms. Remarkably, photoisomerization induces drastic changes in intrapore polarity as well as pore shape and size, which exert profound effects on the molecular adsorption of a broad spectrum of compounds, ranging from inorganic iodine to organic dyes, drugs, and enzymes. Unexpectedly, the systems respond rapidly to visible lights to gate the molecular release of drugs and enzymes. Photoadaptable covalent organic frameworks with reversibly convertible pores offer a platform for constructing light-gating porous materials and tailorable delivery systems, remotely controlled by visible lights.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c02164DOI Listing

Publication Analysis

Top Keywords

covalent organic
12
organic frameworks
12
crystalline porous
8
porous covalent
8
drugs enzymes
8
visible lights
8
light-gating crystalline
4
organic
4
frameworks
4
frameworks report
4

Similar Publications

Porphyrin's excellent biocompatibility and modifiability make it a widely studied photoactive material. However, its large π-bond conjugated structure leads to aggregation and precipitation in physiological solutions, limiting the biomedical applications of porphyrin-based photoactive materials. It has been demonstrated through research that fabricating porphyrin molecules into nanoscale covalent organic frameworks (COFs) structures can circumvent issues such as poor dispersibility resulting from hydrophobicity, thereby significantly augmenting the photoactivity of porphyrin materials.

View Article and Find Full Text PDF

Efficient photoresponsive one-dimensional covalent organic framework as oxidase-like enzyme for ultrasensitive detection of antioxidants.

Talanta

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China. Electronic address:

Natural polyphenolic antioxidants are widely present in foods such as fruits and vegetables, meanwhile applied in food processing and storage to prevent the formation of harmful compounds. While excessive antioxidants lead to negative impacts on human health. Hence, it is crucial to accurately detect antioxidant levels in order to enhance the overall nutritional content and food safety.

View Article and Find Full Text PDF

Nanoencapsulation of Living Microbial Cells in Porous Covalent Organic Framework Shells.

ACS Nano

January 2025

Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.

Encapsulating living cells within nanoshells offers an important approach to enhance their stability against environmental stressors and broaden their application scope. However, this often leads to impaired mass transfer at the cell biointerface. Strengthening the protective shell with well-defined, ordered transport channels is crucial to regulating molecular transport and maintaining cell viability and biofunctionality.

View Article and Find Full Text PDF

Porous Materials for Early Diagnosis of Neurodegenerative Diseases.

Adv Healthc Mater

January 2025

Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India.

Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases.

View Article and Find Full Text PDF

sp-carbon-linked covalent organic frameworks (spc-COFs) are crystalline porous polymers with repeat organic units linked by sp carbons, and have attracted increasing interest due to their robust skeleton and tunable semiconducting properties. Single-crystalline spc-COFs with well-defined structures can represent an ideal platform for investigating fundamental physics properties and device performance. However, the robust olefin bonds inhibit the reversible-reaction-based crystal self-correction, thus yielding polycrystalline or amorphous polymers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!