Insertion sequence (IS) elements are mobile genetic elements in bacterial genomes that support adaptation. We developed a database of IS elements coupled to a computational pipeline that identifies IS element insertions in the microbiota. We discovered that diverse IS elements insert into the genomes of intestinal bacteria regardless of human host lifestyle. These insertions target bacterial accessory genes that aid in their adaptation to unique environmental conditions. Using IS expansion in Bacteroides, we show that IS activity leads to the insertion of "hot spots" in accessory genes. We show that IS insertions are stable and can be transferred between humans. Extreme environmental perturbations force IS elements to fall out of the microbiota, and many fail to rebound following homeostasis. Our work shows that IS elements drive bacterial genome diversification within the microbiota and establishes a framework for understanding how strain-level variation within the microbiota impacts human health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081829 | PMC |
http://dx.doi.org/10.1016/j.chom.2024.03.005 | DOI Listing |
Viruses
December 2024
Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA.
The nucleocapsid (N) protein is the most expressed protein in later stages of SARS-CoV-2 infection with several important functions. It is translated from a subgenomic mRNA (sgmRNA) formed by template switching during transcription. A recently described translation initiation site (TIS) with a CTG codon in the leader sequence (TIS-L) is out of frame with most structural and accessory genes including the N gene and may act as a translation suppressor.
View Article and Find Full Text PDFMicroorganisms
January 2025
Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
is one of the leading bacterial causes of gastroenteritis worldwide. It frequently contaminates poultry and other raw meat products, which are the primary sources of infections in humans. Plasmids, known as important mobile genetic elements, often carry genes for antibiotic resistance, virulence, and self-mobilization.
View Article and Find Full Text PDFMicroorganisms
December 2024
School of Food Science and Engineering, Shaanxi University of Science & Technology, No. 6 Xuefu Road, Xi'an 710021, China.
is a ubiquitous inhabitant of estuarine and marine environments that causes vibriosis in aquatic animals and food poisoning in humans. Accessory colonizing factor (ACF) is employed by to assist in the colonization and invasion of host cells leading to subsequent illnesses. In this work, Δ, an in-frame deletion mutant strain lacking the 4th to the 645th nucleotides of the open reading frame (ORF) of the gene, and the complementary strain were constructed to decipher the function of AcfA in .
View Article and Find Full Text PDFGenes (Basel)
January 2025
Departamento de Agronomía, Universidad Nacional José Faustino Sánchez Carrión (UNJFSC), Lima 15136, Peru.
Bioremediation induced by bacteria offers a promising alternative for the contamination of aromatic hydrocarbons due to their metabolic processes suitable for the removal of these pollutants, as many of them are carcinogenic molecules and dangerous to human health. Our research focused on isolating a bacterium from the rhizosphere of the tara tree with the ability to degrade polycyclic aromatic hydrocarbons, using draft genomic sequencing and computational analysis. sp.
View Article and Find Full Text PDFSci Rep
January 2025
College of Life and Environmental Sciences, University of Exeter, Biosciences, Exeter, EX4 4QD, UK.
The mangrove killifish, Kryptolebias marmoratus, can reproduce with self-fertilisation, offering a unique and useful genetic tool for generation of genetic mutants and quick identification of mutated genes. From an ENU-mutated mangrove killifish line R228, we have isolated a novel mutant line, no-fin-ray/nfr in which homozygous mutant of adult fish fin ray development is largely reduced. Illumina RNAseq with 3 embryos each from mutants, siblings and the parental WT strain Hon9 (only 9 embryos as total) identified a mutation in the edaradd in a highly conserved C-terminal death domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!