AI Article Synopsis

  • Efficient pure-red emission LEDs are crucial for high-definition displays, but challenges like phase segregation and spectral instability complicate their development.
  • A novel method using a benzene-series solvent instead of traditional ones prevents contamination and enhances the dissolution of halides, leading to the creation of precisely sized CsPbI quantum dots (QDs).
  • These optimized QDs result in PeLEDs that achieve pure-red electroluminescence nearing Rec. 2020 standards, with impressive efficiency metrics.

Article Abstract

Efficient pure-red emission light-emitting diodes (LEDs) are essential for high-definition displays, yet achieving pure-red emission is hindered by challenges like phase segregation and spectral instability when using halide mixing. Additionally, strongly confined quantum dots (QDs) produced through traditional hot-injection methods face byproduct contamination due to poor solubility of metal halide salts in the solvent octadecene (ODE) at low temperatures. Herein, we introduced a novel method using a benzene-series strongly electrostatic potential solvent instead of ODE to prevent PbI intermediates and promote their dissolution into [PbI]. Increasing methyl groups on benzene yields precisely sized (4.4 ± 0.1 nm) CsPbI QDs with exceptional properties: a narrow 630 nm PL peak with photoluminescence quantum yield (PLQY) of 97%. Sequential ligand post-treatment optimizes optical and electrical performance of QDs. PeLEDs based on optimized QDs achieve pure-red EL (CIE: 0.700, 0.290) approaching Rec. 2020 standards, with an EQE of 25.2% and of 120 min at initial luminance of 107 cd/m.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c00651DOI Listing

Publication Analysis

Top Keywords

light-emitting diodes
8
electrostatic potential
8
potential solvent
8
sequential ligand
8
ligand post-treatment
8
pure-red emission
8
high-efficiency pure-red
4
pure-red cspbi
4
cspbi quantum
4
quantum dot
4

Similar Publications

Background: Carpal tunnel syndrome (CTS) is characterized as a compressive neuropathy of the median nerve and has several treatments, including photobiomodulation, which can be performed with low-intensity laser therapy (LLLT) and light-emitting diodes (LEDs).

Purpose: To carry out a literature review on the effectiveness of low-intensity laser therapy (LLLT) in CTS.

Methods: This study is characterized by being a systematic review with metaanalysis.

View Article and Find Full Text PDF

Circularly polarized organic light-emitting diodes (CP-OLEDs) have significant promise for naked-eye 3D displays. However, most devices are fabricated using vacuum deposition technology, and development of efficient solution-processed CP-OLEDs, particularly those exhibiting low efficiency roll-off, remains a formidable challenge. This research successfully designed and synthesized two pairs of thermally activated delayed fluorescence (TADF) enantiomers through isomer engineering, namely (R/S)-N-5-TPA and (R/S)-N-4-TPA, which features fifth and fourth substitution sites of phthalimide (acceptor) by tri-phenylamine (donor), respectively.

View Article and Find Full Text PDF

The moth fauna is more diverse in the understorey than in the canopy in a European forest.

Bull Entomol Res

January 2025

Jena Institute of Systematic Zoology and Evolutionary Biology and Phyletic Museum, Friedrich Schiller University, Jena, Germany.

The canopy of forests as the 'last biotic frontier' has often been neglected in insect biodiversity studies because it is harder to access compared to the understorey, even in relatively well-known temperate ecosystems. We investigated the diversity, abundance, and body size patterns of macromoths (Lepidoptera) in the canopy and understorey in a central European deciduous forest. We collected moths at two sites during 19 trapping nights and three lunar phases between July and September 2021 using a weak ultraviolet light emitting diode (LED) lamp (LepiLED ).

View Article and Find Full Text PDF

How Structure and Hydrostatic Pressure Impact Excited-State Properties of Organic Room-Temperature Phosphorescence Molecules: A Theoretical Perspective.

J Phys Chem A

January 2025

Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.

Organic room-temperature phosphorescence (RTP) emitters with long lifetimes, high exciton utilizations, and tunable emission properties show promising applications in organic light-emitting diodes (OLEDs) and biomedical fields. Their excited-state properties are highly related to single molecular structure, aggregation morphology, and external stimulus (such as hydrostatic pressure effect). To gain a deeper understanding and effectively regulate the key factors of luminescent efficiency and lifetime for RTP emitters, we employ the thermal vibration correlation function (TVCF) theory coupled with quantum mechanics/molecular mechanics (QM/MM) calculations to investigate the photophysical properties of three reported RTP crystals (Bp-OEt, Xan-OEt, and Xan-OMe) with elastic/plastic deformation.

View Article and Find Full Text PDF

Disorder-order transition-induced unusual bandgap bowing effect of tin-lead mixed perovskites.

Sci Adv

January 2025

Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen 518055, Guangdong, China.

Owing to the predominant merit of tunable bandgaps, tin-lead mixed perovskites have shown great potentials in realizing near-infrared optoelectronics and are receiving increasing attention. However, despite the merit, there is still a lack of fundamental understanding of the bandgap variation as a function of Sn/Pb ratio, mainly because the films are easy to segregate in terms of both composition and phase. Here, we report a fully stoichiometric synthesis of monocrystalline FAPbSnI nanocrystals as well as their atomic-scale imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!