Salvianolic acid A prevents UV-induced skin damage by inhibiting the cGAS-STING pathway.

Int Immunopharmacol

State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, Nanjing, China. Electronic address:

Published: May 2024

DNA damage resulting from UV irradiation on the skin has been extensively documented in numerous studies. In our prior investigations, we demonstrated that UVB-induced DNA breakage from keratinocytes can activate the cGAS-STING pathway in macrophages. The cGAS-STING signaling pathway serves as the principal effector for detecting and responding to abnormal double-stranded DNA in the cytoplasm. Expanding on our previous findings, we have further validated that STING knockout significantly diminishes UVB-induced skin damage, emphasizing the critical role of cGAS-STING activation in this context. Salvianolic acid A, a principal active constituent of Salvia miltiorrhiza Burge, has been extensively studied for its therapeutic effects in conditions such as coronary heart disease, angina pectoris, and diabetic peripheral neuropathy. However, its effect on cGAS-STING pathway and its ability to alleviate skin damage have not been previously reported. In a co-culture system, supernatant from UVB-treated keratinocytes induced IRF3 activation in macrophages, and this activation was inhibited by salvianolic acid A. Our investigation, employing photodamage and photoaging models, establishes that salvianolic acid A effectively mitigates UV-induced epidermal thickening and collagen degeneration. Treatment with salvianolic acid A significantly reduced skin damage, epidermal thickness increase, and keratinocyte hyperproliferation compared to the untreated photo-damage and photoaging model groups. In summary, salvianolic acid A emerges as a promising candidate for preventing UV-induced skin damage by inhibiting cGAS-STING activation. This research enhances our understanding of the intricate mechanisms underlying skin photodamage and provides a potential avenue for the development of therapeutic interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.111971DOI Listing

Publication Analysis

Top Keywords

salvianolic acid
24
skin damage
20
cgas-sting pathway
12
uv-induced skin
8
damage inhibiting
8
inhibiting cgas-sting
8
cgas-sting activation
8
skin
7
salvianolic
6
damage
6

Similar Publications

Background: Salvianolic acid B (Sal B) is potentially the most valuable water-soluble active component in Salvia miltiorrhiza. Its chemical formula contains multiple phenolic hydroxyl groups, so it has a strong antioxidant capacity.

Objective: We aim to investigate the efficacy and the potential mechanism of Sal B in the treatment of acute ischemic stroke injury.

View Article and Find Full Text PDF

, the valuable traditional Chinese medicinal plant, has been used in clinics for thousands of years. The water-soluble salvianolic acid compounds are bioactive substances used in treating many diseases. Gibberellins (GAs) are growth-promoting phytohormones that regulate plant growth and development.

View Article and Find Full Text PDF

Purpose: Salvianolate for injection (SFI) is a widely used treatment for acute myocardial infarction (AMI). This study aims to assess the efficacy and safety of SFI in treating AMI by synthesizing evidence from published randomized controlled trials (RCTs).

Methods: Seven databases were searched for relevant RCTs published up to 1 July 2024.

View Article and Find Full Text PDF
Article Synopsis
  • Ferritin is an iron storage protein that could serve as a new type of iron supplement, but its function can be influenced by food components like phenolic acids.
  • The study found that salvianolic acid B (SalB) interacts with ferritin and iron ions primarily through hydrogen bonding and van der Waals forces, promoting iron oxidation while having a slower release rate compared to ascorbic acid.
  • The research highlights the potential use of SalB in improving the efficiency of ferritin as an iron supplement and emphasizes the importance of phenolic acids in food applications.
View Article and Find Full Text PDF

An electrostatic encapsulation strategy to motivate 3D-printed polyelectrolyte scaffolds for repair of osteoporotic bone defects.

Bioact Mater

April 2025

Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China.

Repair of osteoporotic bone defects (OBD) remains a clinical challenge due to dysregulated bone homeostasis, characterized by impaired osteogenesis and excessive osteoclast activity. While drug-loaded 3D-printed scaffolds hold great potential in the restoration of bone homeostasis for enhanced OBD repair, achieving the controlled release and targeted delivery of drugs in a 3D-printed scaffold is still unmet. Herein, we developed an electrostatic encapsulation strategy to motivate 3D-printed polyelectrolyte scaffolds (APS@P) with bone-targeting liposome formulation of salvianolic acid B (SAB-BTL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!