Introduction: Bimetallic nanoparticles, specifically Zinc oxide (ZnO) and Silver (Ag), continue to much outperform other nanoparticles investigated for a variety of biological uses in the field of cancer therapy. This study introduces biosynthesis of bimetallic silver/zinc oxide nanocomposites (Ag@ZnO NCs) using the Crocus sativus extract and evaluates their anti-cancer properties against cervical cancer.

Methods: The process of generating bimetallic nanoparticles (NPs), namely Ag@ZnO NCs, through the utilization of Crocus sativus extract proved to be uncomplicated and eco-friendly. Various methods, such as UV-vis, DLS, FTIR, EDX, and SEM analyses, were utilized to characterize the generated Ag@ZnO NCs. The MTT assay was employed to assess the cytotoxic properties of biosynthesized bimetallic Ag@ZnO NCs against the HeLa cervical cancer cell line. Moreover, the impact of Ag@ZnO NCs on HeLa cells was assessed by examining cell survival, ROS production, MMP levels, and induced apoptosis. Through western blot analysis, the expression levels of the PI3K, AKT, mTOR, Cyclin D, and CDK proteins seemed to be ascertained. Using flow cytometry, the cancer cells' progression through necrosis and apoptosis, in addition to the cell cycle analysis, were investigated.

Results: Bimetallic Ag@ZnO NCs that were biosynthesized showed a high degree of stability, as demonstrated by the physicochemical assessments. The median size of the particles in these NCs was approximately 80-90 nm, and their zeta potential was -14.70 mV. AgNPs and ZnO were found, according to EDX data. Further, Ag@ZnO NCs hold promise as a potential treatment for cervical cancer. After 24 hours of treatment, a dosage of 5 µg/mL or higher resulted in a maximum inhibitory effect of 58 ± 2.9. The concurrent application of Ag/ZnO NPs to HeLa cells resulted in elevated apoptotic signals and a significant generation of reactive oxygen species (ROS). As a result, the bimettalic Ag@ZnO NCs treatment has been recognized as a chemotherapeutic intervention by inhibiting the production of PI3K, AKT, and mTOR-mediated regulation of propagation and cell cycle-regulating proteins.

Conclusions: The research yielded important insights into the cytotoxic etiology of biosynthesized bimetallic Ag@ZnO NCs against HeLa cells. The biosynthesized bimetallic Ag@ZnO NCs have a significant antitumor potential, which appears to be associated with the development of oxidative stress, which inhibits the development of the cell cycle and the proliferation of cells. Therefore, in the future, biosynthesized bimetallic Ag@ZnO NCs may be used as a powerful anticancer drug to treat cervical cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtemb.2024.127437DOI Listing

Publication Analysis

Top Keywords

ag@zno ncs
44
bimetallic ag@zno
24
cervical cancer
16
biosynthesized bimetallic
16
ag@zno
12
ncs
12
ncs hela
12
hela cells
12
bimetallic
8
bimetallic nanoparticles
8

Similar Publications

Introduction: Bimetallic nanoparticles, specifically Zinc oxide (ZnO) and Silver (Ag), continue to much outperform other nanoparticles investigated for a variety of biological uses in the field of cancer therapy. This study introduces biosynthesis of bimetallic silver/zinc oxide nanocomposites (Ag@ZnO NCs) using the Crocus sativus extract and evaluates their anti-cancer properties against cervical cancer.

Methods: The process of generating bimetallic nanoparticles (NPs), namely Ag@ZnO NCs, through the utilization of Crocus sativus extract proved to be uncomplicated and eco-friendly.

View Article and Find Full Text PDF

The quest to synthesize safe, non-hazardous Ag-ZnO nanoomposites (NCs) with improved physical and chemical properties has necessitated green synthesis approaches. In this research, Launaea cornuta leaf extract was proposed for the green synthesis of Ag-ZnO NCs, wherein the leaf extract was used as a reducing and capping agent. The antibacterial activity of the prepared nanoomposites was investigated against Escherichia coli and Staphylococcus aureus through the disc diffusion method.

View Article and Find Full Text PDF

Background: As a consequence of their eco-friendliness, simplicity and non-toxicity, the fabrication of metal and metal oxide nanoparticles using greener chemistry has been a highly attractive research area over the last decade.

Aim: In this study focused on the fabrication of silver-Zinc oxide nanocomposite (Ag-ZnO NCs) using leaf extract and evaluating its potential biological activities, against in an in vitro and in vivo model using BALB/c mice.

Methods: In this study, the synthesis of Ag-ZnO NCs was accomplished using local leaf extracts.

View Article and Find Full Text PDF

The biological synthesis of nanocomposites has become cost-effective and environmentally friendly and can achieve sustainability with high efficiency. Recently, the biological synthesis of semiconductor and metal-doped semiconductor nanocomposites with enhanced photocatalytic degradation efficiency, anticancer, and antibacterial properties has attracted considerable attention. To this end, for the first time, we biosynthesized zinc oxide (ZnO) and silver/ZnO nanocomposites (Ag/ZnO NCs) as semiconductor and metal-doped semiconductor nanocomposites, respectively, using the cell-free filtrate (CFF) of the bacterium .

View Article and Find Full Text PDF

In this study, bio-Ag/ZnO NCs were synthesized a microwave-assisted biogenic electrochemical method using mangosteen () peel extract as a biogenic reducing agent for the reduction of Zn and Ag ions to form hybrid nanoparticles. The as-synthesized NC samples at three different microwave irradiation temperatures ( , , ) exhibited a remarkable difference in size and crystallinity that directly impacted their electrocatalytic behaviors as well as electrochemical sensing performance. The obtained results indicate that the sample showed the highest electrochemical performance among the investigated samples, which is attributed to the improved particle size distribution and crystal microstructure that enhanced charge transfer and the electroactive surface area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!