A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Uncovering the roles of in redox and bioenergetic homeostasis: implications for antitubercular therapy. | LitMetric

AI Article Synopsis

  • - The study explores how the bacterium causing tuberculosis has developed mechanisms to resist damage by reactive oxygen species (ROS) produced during infections, highlighting a specific gene's role in this defense.
  • - Deleting this gene led to increased vulnerability to oxidative stress, reduced energy levels (NAD, NADH, ATP), and impaired bacterial growth, which was influenced by the carbon source used.
  • - The research emphasizes the gene's importance in regulating redox balance and mycobacterial metabolism, suggesting it could be a valuable target for new treatments against tuberculosis.

Article Abstract

Unlabelled: (), the pathogenic bacterium that causes tuberculosis, has evolved sophisticated defense mechanisms to counteract the cytotoxicity of reactive oxygen species (ROS) generated within host macrophages during infection. The gene in and () plays a crucial role in defense mechanisms against ROS generated during infection. We demonstrate that encodes an epoxide hydrolase and contributes to ROS detoxification. Deletion of in resulted in a mutant with increased sensitivity to oxidative stress, increased accumulation of aldehyde species, and decreased production of mycothiol and ergothioneine. This heightened vulnerability is attributed to the increased expression of , a universal stress sensor. The absence of also resulted in reduced intracellular levels of NAD, NADH, and ATP. Bacterial growth was impaired, even in the absence of external stressors, and the impairment was carbon source dependent. Initial MelH substrate specificity studies demonstrate a preference for epoxides with a single aromatic substituent. Taken together, these results highlight the role of in mycobacterial bioenergetic metabolism and provide new insights into the complex interplay between redox homeostasis and generation of reactive aldehyde species in mycobacteria.

Importance: This study unveils the pivotal role played by the gene in and in in combatting the detrimental impact of oxidative conditions during infection. This investigation revealed notable alterations in the level of cytokinin-associated aldehyde, -hydroxybenzaldehyde, as well as the redox buffer ergothioneine, upon deletion of . Moreover, changes in crucial cofactors responsible for electron transfer highlighted 's crucial function in maintaining a delicate equilibrium of redox and bioenergetic processes. MelH prefers epoxide small substrates with a phenyl substituted substrate. These findings collectively emphasize the potential of as an attractive target for the development of novel antitubercular therapies that sensitize mycobacteria to host stress, offering new avenues for combating tuberculosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11036813PMC
http://dx.doi.org/10.1128/msphere.00061-24DOI Listing

Publication Analysis

Top Keywords

redox bioenergetic
8
defense mechanisms
8
ros generated
8
aldehyde species
8
uncovering roles
4
redox
4
roles redox
4
bioenergetic homeostasis
4
homeostasis implications
4
implications antitubercular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: