The wing is one of the most important parts of a bird's locomotor system and is the inspiration origination for bionic wing design. During wing motions, the wing shape is closely related to the rotation angles of wing bones. Therefore, the research on the law of bone movement in the process of wing movement can be good guidance for the design of the bionic morphing wing. In this paper, the skeletal posture of the peregrine falcon wing during the extension/flexion is studied to obtain critical data on skeletal posture. Since an elbow joint and a wrist joint rotate correlatively to drive a wing to flex/extend, the wing skeleton is simplified as a four-bar mechanism in this paper. The degree of reproduction of wing skeleton postures was quantitatively analyzed using the four-bar mechanism model, and the bionic wing skeleton was designed. It is found that the wing motions have been reproduced with high precision.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10986943 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299982 | PLOS |
J Orthop Case Rep
January 2025
Department of Orthopaedics, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan, India.
Introduction: Low-grade myofibroblastic sarcoma (LGMS) is an atypical and extremely infrequent type of tumor, primary mass being usually present in subcutaneous and soft tissue. Bony involvement is very rare. It has a very high chance of recurrence locally due to its aggressive biological behavior, metastasis in other parts of body is rarely seen.
View Article and Find Full Text PDFBMC Musculoskelet Disord
January 2025
Department of Orthopaedic Surgery, Atrium Health Musculoskeletal Institute, 2001 Vail Ave, Charlotte, NC, USA.
Background: Hip morphology variations, particularly in femoral neck shaft angle (NSA) and iliac wing width (IWW), have been associated with gluteal tendinopathy. However, the biomechanical implications of these morphological differences on gluteal muscle function are not well understood. This study investigates how NSA and IWW influence gluteal muscle forces, moment arms, and estimated tendon loads during walking, aiming to provide insights into the potential biomechanical pathways that may contribute to altered lateral hip loading patterns.
View Article and Find Full Text PDFNano Lett
December 2024
Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.
Advanced epoxy (EP)-based composites, retaining excellent physical and mechanical properties, are in demand in many high-end devices, such as fan blades of aeroengines. However, the irreconcilable conflict between stiffness and toughness within an EP often leads to catastrophic brittle fracture. Herein, inspired by the medulla skeleton of wing feathers of , bioinspired EP-based composites (BECs) were obtained via integrating functionalized three-dimensional interconnected skeleton into a brittle EP.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
December 2024
Naval Medical Research Unit San Antonio, San Antonio, Texas, USA.
A combined biomaterial and cell-based solution to heal critical size bone defects in the craniomaxillofacial area is a promising alternative therapeutic option to improve upon autografting, the current gold standard. A shape memory polymer (SMP) scaffold, composed of biodegradable poly(ε-caprolactone) and coated with bioactive polydopamine, was evaluated with mesenchymal stromal cells (MSCs) derived from adipose (ADSC), bone marrow (BMSC), or umbilical cord (UCSC) tissue in their undifferentiated state or pre-differentiated toward osteoblasts for bone healing in a rat calvarial defect model. Pre-differentiating ADSCs and UCSCs resulted in higher new bone volume fraction (15.
View Article and Find Full Text PDFZhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
November 2024
ENT institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai200031, China Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor, Shanghai200031, China.
To investigate the distribution and primary drainage sites of the venous drainage system in the pedicled nasal septal mucosal flap, as well as to examine protective measures for the venous system of the nasal septal mucosal flap and its application in repairing the nasal skull base through the anatomical study of the nasal septum mucosal venous system in cadavers. Gross anatomy dissections were performed on 13 sides perfused fresh frozen cadaveric head specimens. The nasal septum mucosal flap was separated along the perichondrium and subperiosteum, then passed across the vomer, anterior wall of sphenoid sinus, clivus, and towards the anterior edge of vertical plate of palatine bone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!