The relaxation of hot electrons in semiconductors is pivotal for both energy harvesting processes and optoelectronics. Utilizing a self-developed non-adiabatic molecular dynamics simulation approach in the momentum space (NAMD_), we have examined the dynamics of hot electrons in silicon. Whether excited from the Γ or L point, the relaxation dynamics exhibit two distinct stages. Initially, within 100 fs, electrons scatter with phonons throughout the Brillouin zone. Subsequently, over a few picoseconds, they further relax toward the conduction band minimum as a whole. This picture of hot electron relaxation is highly consistent with the quasi-equilibrium hot electron ensemble (HEE) concept. Throughout the hot electron relaxation process, energy transfer to phonons is efficient, leading to time-dependent phonon excitation, which is thoroughly analyzed. This investigation provides a novel perspective on hot electron relaxation in silicon, which holds substantive implications for the realm of photovoltaic and optoelectronic device applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c00591 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!