Heteroatom substitution and anchoring groups have an important impact on the thermoelectric properties of single-molecule junctions. Herein, thermoelectric properties of several anthracene derivative based single-molecule junctions are studied by means of first-principles calculations. In particular, we pay great attention to the edge substitution effects and find that edge substitution with nitrogen can induce a transmission peak near the Fermi energy, leading to large transmission coefficients and electrical conductance at the Fermi energy. Additionally, the steep shape of the transmission function gives rise to a high Seebeck coefficient. Therefore, an enhanced power factor can be expected. The robustness of this edge substitution effect has been examined by altering the electrode distance and introducing heteroatoms at different positions. The enhancement of the power factor due to edge substitution makes the studied single-molecule junction a promising candidate for efficient thermoelectric devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp06176k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!