A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Impact of Digital Self-Monitoring of Weight on Improving Diabetes Clinical Outcomes: Quasi-Randomized Study. | LitMetric

Background: The management of type 2 diabetes (T2D) and obesity, particularly in the context of self-monitoring, remains a critical challenge in health care. As nearly 80% to 90% of patients with T2D have overweight or obesity, there is a compelling need for interventions that can effectively manage both conditions simultaneously. One of the goals in managing chronic conditions is to increase awareness and generate behavioral change to improve outcomes in diabetes and related comorbidities, such as overweight or obesity. There is a lack of real-life evidence to test the impact of self-monitoring of weight on glycemic outcomes and its underlying mechanisms.

Objective: This study aims to assess the efficacy of digital self-monitoring of weight on blood glucose (BG) levels during diabetes management, investigating whether the weight changes may drive glucose fluctuations.

Methods: In this retrospective, real-world quasi-randomized study, 50% of the individuals who regularly used the weight monitoring (WM) feature were propensity score matched with 50% of the users who did not use the weight monitoring feature (NWM) based on demographic and clinical characteristics. All the patients were diagnosed with T2D and tracked their BG levels. We analyzed monthly aggregated data 6 months before and after starting their weight monitoring. A piecewise mixed model was used for analyzing the time trajectories of BG and weight as well as exploring the disaggregation effect of between- and within-patient lagged effects of weight on BG.

Results: The WM group exhibited a significant reduction in BG levels post intervention (P<.001), whereas the nonmonitoring group showed no significant changes (P=.59), and both groups showed no differences in BG pattern before the intervention (P=.59). Furthermore, the WM group achieved a meaningful decrease in BMI (P<.001). Finally, both within-patient (P<.001) and between-patient (P=.008) weight variability was positively associated with BG levels. However, 1-month lagged back BMI was not associated with BG levels (P=.36).

Conclusions: This study highlights the substantial benefits of self-monitoring of weight in managing BG levels in patients with diabetes, facilitated by a digital health platform, and advocates for the integration of digital self-monitoring tools in chronic disease management. We also provide initial evidence of testing the underlying mechanisms associated with BG management, underscoring the potential role of patient empowerment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11022133PMC
http://dx.doi.org/10.2196/54940DOI Listing

Publication Analysis

Top Keywords

self-monitoring weight
12
weight monitoring
12
weight
9
digital self-monitoring
8
quasi-randomized study
8
overweight obesity
8
monitoring feature
8
impact digital
4
self-monitoring
4
weight improving
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!