Joint models linking longitudinal biomarkers or recurrent event processes with a terminal event, for example, mortality, have been studied extensively. Motivated by studies of recurrent delirium events in patients receiving care in an intensive care unit (ICU), we devise a joint model for a recurrent event process and multiple terminal events. Being discharged alive from the ICU or experiencing mortality may be associated with a patient's hazard of delirium, violating the assumption of independent censoring. Moreover, the direction of the association between the hazards of delirium and mortality may be opposite of the direction of association between the hazards of delirium and ICU discharge. Hence treating either terminal event as independent censoring may bias inferences. We propose a competing joint model that uses a latent frailty to link a patient's recurrent and competing terminal event processes. We fit our model to data from a completed placebo-controlled clinical trial, which studied whether Haloperidol could prevent death and delirium among ICU patients. The clinical trial served as a foundation for a simulation study, in which we evaluate the properties, for example, bias and confidence interval coverage, of the competing joint model. As part of the simulation study, we demonstrate the shortcomings of using a joint model with a recurrent delirium process and a single terminal event to study delirium in the ICU. Lastly, we discuss limitations and possible extensions for the competing joint model. The competing joint model has been added to frailtypack, an R package for fitting an assortment of joint models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258962PMC
http://dx.doi.org/10.1002/sim.10053DOI Listing

Publication Analysis

Top Keywords

joint model
24
delirium icu
16
terminal event
16
competing joint
16
model recurrent
12
joint
9
model
8
recurrent competing
8
competing terminal
8
terminal events
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!