The interplay between X-chromosome functional dosage and circadian regulation in females.

Arch Womens Ment Health

Sleep Institute, Associação Fundo de Incentivo à Pesquisa, Rua Marselhesa, 500, São Paulo, SP, 04020060, Brazil.

Published: October 2024

Purpose: Biological factors and mechanisms that drive higher prevalence of insomnia in females are poorly understood. This study focused on the neurological consequences of X-chromosome functional imbalances between sexes.

Methods: Benefited from publicly available large-scale genetic, transcriptional and epigenomic data, we curated and contrasted different gene lists: (1) X-liked genes, including assignments for X-chromosome inactivation patterns and disease associations; (2) sleep-associated genes; (3) gene expression markers for the suprachiasmatic nucleus.

Results: We show that X-linked markers for the suprachiasmatic nucleus are significantly enriched for clinically relevant genes in the context of rare genetic syndromes and brain waves modulation.

Conclusion: Considering female-specific patterns on brain transcriptional programs becomes essential when designing health care strategies for mental and sleep illnesses with sex bias in prevalence.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00737-024-01452-2DOI Listing

Publication Analysis

Top Keywords

x-chromosome functional
8
markers suprachiasmatic
8
interplay x-chromosome
4
functional dosage
4
dosage circadian
4
circadian regulation
4
regulation females
4
females purpose
4
purpose biological
4
biological factors
4

Similar Publications

The H3K79 methyltransferase DOT1L is essential for multiple aspects of mammalian development where it has been shown to regulate gene expression. Here, by producing and integrating epigenomic and spike-in RNA-seq data, we decipher the molecular role of DOT1L during mouse spermatogenesis and show that it has opposite effects on gene expression depending on chromatin environment. On one hand, DOT1L represses autosomal genes that are devoid of H3K79me2 at their bodies and located in H3K27me3-rich/H3K27ac-poor environments.

View Article and Find Full Text PDF

Retrotransposon Gag-like (RTL) 8A, 8B and 8C are eutherian-specific genes derived from a certain retrovirus. They cluster as a triplet of genes on the X chromosome, but their function remains unknown. Here, we demonstrate that and play important roles in the brain: their double knockout (DKO) mice not only exhibit reduced social responses and increased apathy-like behaviour, but also become obese from young adulthood, similar to patients with late Prader-Willi syndrome (PWS), a neurodevelopmental genomic imprinting disorder.

View Article and Find Full Text PDF

Chromosomal aberrations are rare but known causes of movement disorders, presenting with broad phenotypes in which dystonia may be predominant. During the investigation of such cases, chromosomal studies are not often considered as a first approach. In this article, the authors describe a family affected by a generalized form of dystonia, evolving from a focal phenotype, for which a new X chromosome large duplication was found to be the likely causative, therefore highlighting the role of such studies when facing complex movement disorders.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder that causes a range of developmental problems including cognitive and behavioral impairment and learning disabilities. FXS is caused by full mutations (FM) of the gene expansions to over 200 repeats, with hypermethylation of the cytosine-guanine-guanine (CGG) tandem repeated region in its promoter, resulting in transcriptional silencing and loss of gene function. Female carriers of FM are typically less impaired than males.

View Article and Find Full Text PDF

Localization and Molecular Cloning of the Gene for Melatonin Synthesis in Pigs.

Int J Mol Sci

January 2025

State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

Melatonin is synthesized in multiple tissues and organs of pigs, and existing studies have shown the presence of the melatonin-synthesizing enzyme ASMT protein. However, the genomic information for the gene has been lacking. The aim of this study was to locate the genomic information of the gene in pigs using comparative genomics analysis and then obtain the coding region information through molecular cloning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!