Impact of Transforming Interface Geometry on Edge States in Valley Photonic Crystals.

Phys Rev Lett

Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA, Delft, The Netherlands.

Published: March 2024

We investigate how altering the interface geometry from a zigzag to a glide plane interface between two topologically distinct valley Hall emulating photonic crystals (VPC), profoundly affects edge states. We experimentally observe a transition from gapless to gapped edge states, accompanied by the occurrence of slow light within the Brillouin zone, rather than at its edge. We numerically simulate the propagation and measure the transmittance of the modified edge states through a specially designed valley-conserving defect. The robustness to backscattering gradually decreases, suggesting a disruption of valley-dependent transport. We demonstrate the significance of interface geometry to gapless edge states in a VPC.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.116901DOI Listing

Publication Analysis

Top Keywords

edge states
20
interface geometry
12
photonic crystals
8
edge
6
states
5
impact transforming
4
interface
4
transforming interface
4
geometry edge
4
states valley
4

Similar Publications

Intramolecular charge transfer assisted multi-resonance thermally activated delayed fluorescence emitters for high-performance solution-processed narrowband OLEDs.

Chem Sci

January 2025

Department Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China

Multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters have been actively employed in high-resolution solution-processed organic light emitting diodes (OLEDs) due to their excellent color purity. Nonetheless, they are always confronted with intrinsic slow spin flip of triplet excitons, impeding the electroluminescence properties, especially in non-sensitized OLEDs. Herein, we constructed intramolecular charge transfer (ICT) assisted MR-TADF emitters by grafting donor-acceptor-type moieties with a - or -substitution as a pendant on an organoboron multi-resonance core.

View Article and Find Full Text PDF

Tricuspid regurgitation (TR) is a common valvular heart disease that is associated with increased morbidity and mortality. Traditional surgical interventions, though definitive, carry considerable complexities and risks, especially for high-risk patients, with in-hospital mortality rates of ˜9%. This resulted in the undertreatment of many patients with TR, creating a substantial unmet need.

View Article and Find Full Text PDF

Coherent harmonic generation of magnons in spin textures.

Nat Commun

January 2025

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.

Harmonic generation, a notable non-linear phenomenon, has promising applications in information processing. For spin-waves in ferromagnetic materials, great progress has been made in the generation higher harmonics, however probing the coherence of these higher harmonics is challenging. Here, using in-situ diamond sensors, we study the coherent harmonic generation of spin waves in a soft ferromagnet.

View Article and Find Full Text PDF

Nonlocal Huygens' meta-lens for high-quality-factor spin-multiplexing imaging.

Light Sci Appl

January 2025

Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.

Combining bright-field and edge-enhanced imaging affords an effective avenue for extracting complex morphological information from objects, which is particularly beneficial for biological imaging. Multiplexing meta-lenses present promising candidates for achieving this functionality. However, current multiplexing meta-lenses lack spectral modulation, and crosstalk between different wavelengths hampers the imaging quality, especially for biological samples requiring precise wavelength specificity.

View Article and Find Full Text PDF

This work explores use of a few-shot transfer learning method to train and implement a convolutional spiking neural network (CSNN) on a BrainChip Akida AKD1000 neuromorphic system-on-chip for developing individual-level, instead of traditionally used group-level, models using electroencephalographic data. The efficacy of the method is studied on an advanced driver assist system related task of predicting braking intention. \emph{Approach}: Data are collected from participants operating an NVIDIA JetBot on a testbed simulating urban streets for three different scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!