Saturated absorption measurements of transitions in the (2-0) band of radioactive tritium hydride are performed with the ultrasensitive noise-immune cavity-enhanced optical-heterodyne molecular spectroscopy intracavity absorption technique in the range 1460-1510 nm. The hyperfine structure of rovibrational transitions of tritium hydride, in contrast to that of hydrogen deuteride, exhibits a single isolated hyperfine component, allowing for the accurate determination of hyperfineless rovibrational transition frequencies, resulting in R(0)=203 396 426 692(22) kHz and R(1)=205 380 033 644(21) kHz. This corresponds to an accuracy 3 orders of magnitude better than previous measurements in tritiated hydrogen molecules. Observation of an isolated component in P(1) with reversed signal amplitude contradicts models for line shapes in hydrogen deuteride based on crossover resonances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.113002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!