Understanding the electronic transport of metal-semiconductor heterojunctions is of utmost importance for a wide range of emerging nanoelectronic devices like adaptive transistors, biosensors, and quantum devices. Here, we provide a comparison and in-depth discussion of the investigated Schottky heterojunction devices based on Si and Ge nanowires contacted with pure single-crystal Al. Key for the fabrication of these devices is the selective solid-state metal-semiconductor exchange of Si and Ge nanowires into Al, delivering void-free, single-crystal Al contacts with flat Schottky junctions, distinct from the bulk counterparts. Thereof, a systematic comparison of the temperature-dependent charge carrier injection and transport in Si and Ge by means of current-bias spectroscopy is visualized by 2D colormaps. Thus, it reveals important insights into the operation mechanisms and regimes that cannot be exploited by conventional single-sweep output and transfer characteristics. Importantly, it was found that the Al-Si system shows symmetric effective Schottky barrier (SB) heights for holes and electrons, whereas the Al-Ge system reveals a highly transparent contact for holes due to Fermi level pinning close to the valence band with charge carrier injection saturation due to a thinned effective SB. Moreover, thermionic field emission limits the overall electron conduction, indicating a distinct SB for electrons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11040577PMC
http://dx.doi.org/10.1021/acsami.3c18674DOI Listing

Publication Analysis

Top Keywords

understanding electronic
8
electronic transport
8
charge carrier
8
carrier injection
8
transport al-si
4
al-si al-ge
4
al-ge nanojunctions
4
nanojunctions exploiting
4
exploiting temperature-dependent
4
temperature-dependent bias
4

Similar Publications

Context: Point-of-care ultrasound (POCUS) has diverse applications across various clinical specialties, serving as an adjunct to clinical findings and as a tool for increasing the quality of patient care. Owing to its multifunctionality, a growing number of medical schools are increasingly incorporating POCUS training into their curriculum, some offering hands-on training during the first 2 years of didactics and others utilizing a longitudinal exposure model integrated into all 4 years of medical school education. Midwestern University Arizona College of Osteopathic Medicine (MWU-AZCOM) adopted a 4-year longitudinal approach to include POCUS education in 2017.

View Article and Find Full Text PDF

Electronic confinement induced quantum dot behavior in magic-angle twisted bilayer graphene.

Nanoscale

January 2025

Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.

Magic-angle twisted bilayer graphene (TBLG) has emerged as a versatile platform to explore correlated electron phases driven primarily by low-energy flat bands in moiré superlattices. While techniques for controlling the twist angle between graphene layers have spurred rapid experimental progress, understanding the effects of doping inhomogeneity on electronic transport in correlated electron systems remains challenging. In this work, we investigate the interplay of confinement and doping inhomogeneity on the electrical transport properties of TBLG by leveraging device dimensions and twist angles.

View Article and Find Full Text PDF

Background: The WHO has highlighted that: "promotion of e-cigarettes has led to marked increases in e-cigarette use by children and adolescents." The long-term neuropsychiatric and psychological consequences of substance abuse in adolescence is well recognised. Limited data exists on the adolescent burden of vaping-related nicotine addiction and behavioural and/or psychological dependence to guide pharmacological or behavioural interventions to stop electronic cigarette usage.

View Article and Find Full Text PDF

The future of cell-free synthetic biology.

Biotechnol Notes

November 2024

Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Cell-free synthetic biology aims at the targeted replication, design, and modification of life processes in open systems by breaking free of constraints such as cell membrane barriers and living cell growth. The beginnings of this systematized technology, which took place in the last century, were used to explore the secrets of life. Currently, with its easy integration with other technologies or disciplines, cell-free synthetic biology is developing into a powerful and effective means of understanding, exploiting, and extending the structure and function of natural living systems.

View Article and Find Full Text PDF

In this study, we investigate structural disorder and its implications in metal cluster (MC)-based compounds, specifically focusing on Cs[{MoX}X] (X = Cl and Br). Utilizing synchrotron radiation X-ray diffraction, Fourier transform infrared spectroscopy, and luminescence measurements, we examined the incorporation of water molecules into these compounds and their effects on the crystal structure and optical properties. Our findings reveal that the presence of water molecules induces the lattice disorder, particularly the displacement of Cs atoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!